Science Highlights

These monthly highlights, selected by MagLab Director Greg Boebinger, represent the most promising and cutting-edge research underway in the lab’s seven user facilities.

22 November 2021

Novel "hot-bronze" Nb3Sn for compact accelerators

A new "hot bronze" thin film growth recipe was developed to produce high quality superconducting Niobium-Tin (Nb3Sn) films that are easier to fabricate and that outperform existing technologies.

22 November 2021

New quantum tricks in nitride materials

Gallium nitride (GaN) and Niobium nitride (NbN) are widely used in today's technologies: GaN is used to make blue LEDs and high-frequency transistors while NbN is used to make infrared light detectors. This experiment explores whether a nitride-based device may be relevant for quantum technologies of the future.

25 October 2021

Sunlight converts plastics into diverse chemical mixtures

Sunlight can chemically transform plastics from consumer plastic bags into complex chemical mixtures that leach into the ocean. Understanding the impact of plastic pollution requires advanced analytical techniques that can identify transformed plastic molecules in water samples, and requires instrumentation only available at the Maglab.

25 October 2021

Unusual high-field state discovered in mineral atacamite

Scientists at the Pulsed Field Facility recently found that applying an intense magnetic field to the mineral atacamite (a "frustrated" quantum magnet) yields unusual behavior associated with a novel state of matter known as quantum spin liquid.

25 October 2021

Resilient Bi-2212 Round Wire

Researchers studied the mechanics of supercurrent flow in state-of-the-art Bi-2212 superconducting round wires and learned that the microstructure of the superconducting filaments is inherently resilient, work that could open the door to new opportunities to raise supercurrent capacity of Bi-2212 round wires.

22 September 2021

Restoration of Breathing After Drug Overdose and Spinal Cord Injuries

Respiratory insufficiency is a leading cause of death due to drug overdose or spinal cord injuries. The diaphragm can be stimulated using temporal interference (TI) to restore ventilation with minimally invasive electrodes.

22 September 2021

Linear-In Temperature Resistivity From Isotropic Planckian Scattering Rate

Electrons in metals behave like chaotic bumper cars, crashing into each other at every opportunity. While they may be reckless drivers, this result demonstrates that this chaos has a limit established by the laws of quantum mechanics. Using the 45T hybrid magnet and a crystal of high-temperature superconducting material, scientists were able to measure this boundary using high fields to bend electron trajectories to their will.

22 September 2021

Advanced Microscopy for Better Nanostructural Insights in Bi-2212 Round Wires

Researchers working to push the high temperature superconducting material (Bi-2212) to the forefront of superconducting magnet technology have used novel characterization methods to understand the complex relationship between its processing and its superconducting properties, specifically its current carrying capabilities. 

20 August 2021

First Spin Coherence Measurements in the MagLab's 32T Superconducting Magnet

The MagLab's 32 T all-superconducting magnet is now serving users at full field. An early experiment in the magnet identified an important milestone on the road to quantum computers.

22 July 2021

New High-Magnetic-Field Thermometers for Sub-Millikelvin Temperatures

This highlight focuses on the development of new thermometry required to study quantum materials and phenomena in high magnetic fields and at ultralow temperatures. The team has demonstrated that exceedingly small quartz tuning forks bathed in liquid 3He maintain a constant calibration that is magnetic field independent, thereby opening the use of these devices as new sensors of the response of quantum systems.

22 July 2021

A New Method for Understanding Dynamic Nuclear Polarization

A new method to study how the nuclei of atoms “communicate” with one another in the presence of unpaired electron spins has been developed at the MagLab. Known as hyperpolarization resurgence (HypRes), this method benefits and expands the application of a revolutionary technique known as dynamic nuclear polarization (DNP), which provides enormous signal enhancements in nuclear magnetic resonance (NMR) experiments.

23 June 2021

Magnetoelastic Coupling in the Multiferroic BiFeO3

High-resolution electron magnetic resonance studies of the spin-wave spectrum in the high-field phase of the multiferroic Bismuth ferrite (BiFeO3) reveal direct evidence for the magnetoelastic coupling through a change in lattice symmetry from rhombohedral to monoclinic. This study provides important information for designing future spintronics devices based on BiFeO3.

23 June 2021

Makeup of Dissolved Organic Matter in Arctic Rivers

Researchers share new insights on the role of seasonality in dissolved organic matter (DOM) composition in large Arctic rivers. 

28 May 2021

HTS NMR Probe Tracks Metabolism Cycles During Insect Dormancy

An insect's ability to survive anaerobic conditions (without oxygen) during winter pupation occurs through periodic cycling of aerobic respiration pathways needed to recharge energy and clear waste. The cellular mechanisms at play during these brief near-arousal periods can provide clues to help improve the success in storage and transplant of human organs.

28 May 2021

Exchange Bias Between Coexisting Antiferromagnetic and Spin-Glass Orders

A pane of window glass and a piece of quartz are both are transparent to light, but their atomic structure is very different. Quartz is crystalline at the atomic level while window glass is amorphous. This can also occur with magnetism at the atomic level in solids containing magnetic states such as antiferromagnetism (ordered) and spin-glass (disorded). This work describes the interaction (exchange bias) between ordered and disordered magnetic states and how the magnetic properties of the material are altered as a result.

28 April 2021

First Science from the 75T Duplex Magnet

Duplex magnets use two independent coils powered by capacitor banks to reduce the driven voltages and provide more design flexibility to maximize the generated magnetic fields. The Pulsed Field Facility developed such a duplex magnet to generate magnetic field up to 76.8 Tesla using existing 16-kV, 4-MJ capacitor bank (cap-bank) that now provides important information on a new state of matter in YbB12.

28 April 2021

Structure of Boron-Based Catalysts from 11B Solid-State NMR at 35.2T

Measurements performed at the National High Magnetic Field Laboratory provide unique insight into molecular structure of next-generation catalysts for the production of the widely used industrial chemical, propene.

29 March 2021

Sunlight Produces Water-Soluble Chemicals from Asphalt

Road asphalt is made from aggregate (rocks) mixed with a "binder” from the residue remaining after extraction of gasoline and oils from petroleum crude oil. Until recently, this binder was thought to be chemically unreactive. Maglab scientists subjected a thin film of asphalt binder to simulated sunlight in the laboratory and used ultrahigh resolution mass spectrometry to reveal thousands of new, water-soluble chemicals that could be released into the environment by rainfall.

26 March 2021

Tracking the Potential for Damage in Nb3Sn Superconducting Coils from the Hardness of Surrounding Copper

High field superconductor magnets greater than 10 T made from brittle Nb3Sn superconducting wires need special attention to their assembly, strength and endurance. This new study of damage in Nb3Sn superconducting wire from prototype accelerator coils built at CERN provides a path to designing better superconductor cables for the next generation of higher field accelerator magnets.

26 March 2021

Broadening Participation in DC Field Facility by Bridging a Research Infrastructure Gap

Researchers based at four-year colleges and universities outside of the Research-1 (R1) tier face more obstacles to performing research than their colleagues from R1 universities or national laboratories with robust research infrastructures. Recognizing the need to bridge this infrastructure gap, the MagLab's DC Field Facility expanded access by adding two low-field magnet systems. These "on-ramp" systems facilitate critical access to materials research instrumentation by faculty and students from non-R1 institutions.

Page 1 of 2