Navigating Ørsted's Copenhagen

Trace the two-centuries-old steps of the discoverer of electromagnetism. Find out more in fields magazine.

Hans Christian Ørsted and Copenhagen map

Smart Superconducting Technique

Researchers developed a new way to quickly measure how much current a superconductor can carry using very high pulsed magnetic fields.

Measuring non-linear electric field.

Current Conundrum

Researchers find magnetic field-induced ring current in "nonmagnetic" organic material.

High magnetic fields induce circular electronic motion (ring currents) around the chemical bond loops in non-magnetic aromatic molecules.

Learn Science Online!

Check out tons of educational content about electricity and magnetism on our Magnet Academy website.

Illustrations about electricity and magnetism.

Research Initiatives

Research Initiatives - Materials

MATERIALS

Scientists use our magnets to explore semiconductors, superconductors, newly-grown crystals, buckyballs and materials from the natural world — research that reveals the secret workings of materials and empowers us to develop new technologies.

Read more …

Research Initiatives - Energy

ENERGY

Scientists here are working to optimize petroleum refining, advance potential bio-fuels such as pine needles and algae, and fundamentally change the way we store and deliver energy by developing better batteries.

Read more …

Research Initiatives - Life

LIFE

With the world’s strongest MRI magnet, scientists here study everything from living animals to individual cells, from proteins to disease-fighting molecules found in plants and animals — work that could improve treatment of AIDS, cancer, Alzheimer’s and other diseases.

Read more …

Latest Science Highlights


  • Smart Non-Linear Transport Technique Expands the Frontier of Superconductor Research
    28 July 2020
    Smart Non-Linear Transport Technique Expands the Frontier of Superconductor Research

    Superconductors conduct large amounts of electricity without losses. They are also used to create very large magnetic fields, for example in MRI machines, to study materials and medicine. Here, researchers developed a fast, new "smart" technique to measure how much current a superconductor can carry using very high pulsed magnetic fields.

  • Inducing Magnetic Ring Currents in Non-Magnetic Aromatic Molecules
    28 July 2020
    Inducing Magnetic Ring Currents in Non-Magnetic Aromatic Molecules

    Magnetic induction is used in technology to convert an applied magnetic field into an electric current and vice versa. Nature also makes extensive use of this principle at the atomic and molecular level giving scientists a window to observe material properties. Using the 25 T Split-Helix magnet, researchers observed changes in the optical properties of organic materials due to currents induced by applied magnetic fields flowing in molecular rings, evidence that could increase the list of materials that could be used in future magnetic technologies.

  • Integrated Coil Form Technology for Ultra High Magnetic Fields
    23 June 2020
    Integrated Coil Form Technology for Ultra High Magnetic Fields

    Tests of the first Integrated Coil Form test coil wound using REBCO superconducting tape show promise for use in ultra powerful magnets of the future.

See all Science Highlights

Featured Publications


Smart Non-Linear Transport Technique Expands the Frontier of Superconductor Research, M. Leroux., Physical Review Applied, 11, 054005 (2019) See Science Highlight or Read online 

Inducing Magnetic Ring Currents in Non-Magnetic Aromatic Molecules: A Finding From the 25 T Split-Florida Helix , B. Kudisch, et al., Proceedings of the National Academies of Science, 117 (21), 11289-11298 (2020) See Science Highlight or Read online 

Molecular magnetic building blocks , J.-L. Liu, et al., Angew. Chem., February (2020) See Science Highlight or Read online 

Exploring Topological Semimetals in High Magnetic Fields , J. Liu, et al., Phys. Rev. B, 100, 195123 (2019) See Science Highlight or Read online 

MRI detects brain responses to Alzheimer’s disease plaque deposits and inflammation, L.M. Colon-Perez, et al., NeuroImage, 202, 116138 (2019) See Science Highlight or Read online 

Analytical tool for in vivo triple quantum MR signals, V.D. Schepkin Zeitschrift fur Medizinische Physik, 29 (4), 326-336 (2019) See Science Highlight or Read online 

Nuclear Spin Patterning Controls Electron Spin Coherence , C.E. Jackson, et al., , Chem. Sci., 10 (36), 8447-8454 (2019) See Science Highlight or Read online 

Influence of a nematic phase on high-temperature superconductivity , P. Reiss, et al., Nature Physics, 28, Oct (2019) See Science Highlight or Read online 

High Magnetic Field MRI Evidences Pathwaysfor Metabolic Brain Waste Clearance, K. N. Magdoom, et al., Nature Scientific Reports, 9, 11480 (2019) See Science Highlight or Read online 

Liquid State Dynamic Nuclear Polarization at High Magnetic Field, T. Dubroca, et al., Phys. Chem. Chem. Phys, 21 21200-21204 (2019) See Science Highlight or Read online 

Hafnium greatly improves Nb3Sn superconductor for high field magnets, S. Balachandran, et al., Superconductor Science and Technology,32, 044006 (2019) See Science Highlight or Read online 

Why does magnetic switching occur at such high magnetic fields in Sr3NiIrO6? , K.R. O'Neal, et al., njp Quantum Materials,4, 48 (2019) See Science Highlight or Read online