Pulsed Magnet Performance

The lifetime of future pulsed magnets will be longer than ever because of these new non-destructive testing and quality control methods.

Left: Eddy current inspection of a long length precursor. Right: A chevron crack found by x-ray tomography.

Cuprate Superconductivity

Experiments up to 90 tesla support the idea of quantum criticality underlying superconductivity in cuprates.

Figure

Magnetic Molecules

New research offers promise for the development of future molecular-scale magnetic information storage applications.

Figure

MagLab FAIR Data

The lab will ensure that data taken on our world-unique instruments are findable, accessible, interoperable, and reusable to benefit the entire scientific community.

FAIR data banner

Science Night Goes Virtual

Join us each month for a free, family-friendly science activity delivered LIVE on Zoom right to your devices.

Science Night banner

Research Initiatives

Research Initiatives - Materials

MATERIALS

Scientists use our magnets to explore semiconductors, superconductors, newly-grown crystals, buckyballs and materials from the natural world — research that reveals the secret workings of materials and empowers us to develop new technologies.

Read more …

Research Initiatives - Energy

ENERGY

Scientists here are working to optimize petroleum refining, advance potential bio-fuels such as pine needles and algae, and fundamentally change the way we store and deliver energy by developing better batteries.

Read more …

Research Initiatives - Life

LIFE

With the world’s strongest MRI magnet, scientists here study everything from living animals to individual cells, from proteins to disease-fighting molecules found in plants and animals — work that could improve treatment of AIDS, cancer, Alzheimer’s and other diseases.

Read more …

Latest Science Highlights


  • Strong Magnetic Coupling in Molecular Magnets through Direct Metal-Metal Bonds
    11 February 2021
    Strong Magnetic Coupling in Molecular Magnets through Direct Metal-Metal Bonds

    An exciting advance of interest to future molecular-scale information storage. By using the uniquely high frequency Electron Magnetic Resonance techniques available at the MagLab, researchers have found single molecule magnets that feature direct metal orbital overlap (instead of weak superexchange interactions), resulting in behavior similar to metallic feromagnets that is far more suitable to future technologies than previous molecular magnets.

  • Ninety Teslas Peek Under the Superconducting Dome of a High-Temperature Superconductor
    11 February 2021
    Ninety Teslas Peek Under the Superconducting Dome of a High-Temperature Superconductor

    Physics does not yet know why copper-based superconductors (cuprates) conduct electrical current without dissipation at unprecedentedly high temperatures. Ultra high magnetic fields are used here to suppress superconductivity in a cuprate near absolute zero temperature, revealing an underlying transition to an electronic phase that might be the cause of the superconductivity.

  • Special High-Strength Conductor Testing Improves Future Pulsed Magnet Lifespan
    11 February 2021
    Special High-Strength Conductor Testing Improves Future Pulsed Magnet Lifespan

    Three non-destructive testing methods are developed for inspection of high strength, high conductivity wires which are used to wind ultra-high field pulsed magnets at the National MagLab. We expect the lifetime of future magnets to exceed those of past magnets due to these improvements in quality control.

See all Science Highlights

Featured Publications


Using Magnetic Resonance to Probe Lipid Synthesis in Response to Ketogenic Diet , M.S. Muyyarikkandy, et al., The FASEB Journal, 2020;00:1–18 See Science Highlight or Read online 

Spontaneous "Valley Magnetization" in an Atomically-thin Semiconductor, J. Li, et al., Phys. Rev. Lett., 125, 147602 (2020) See Science Highlight or Read online 

Spin-Charge Interconversion at Near-Terahertz Frequencies, P. Vaidya, Science, 368, 160-165 (2020) See Science Highlight or Read online 

Tunable Weyl Fermions in Chiral Tellurene in High Magnetic Fields, G. Qiu, Nature Nanotechnology, 15, 585–591 (2020) See Science Highlight or Read online 

Deuterium Magnetic Resonance Can Detect Cancer Metabolism by Measuring the Formation of Deuterated Water, R. Mahar, Nature Scientific Reports, 10 (1), 8885 (2020) See Science Highlight or Read online 

High magnetic fields reveal hidden magnetism in a cuprate superconductor, M. Frachet, Nature Physics, 16, 1745-2481 (2020) See Science Highlight or Read online 

Smart Non-Linear Transport Technique Expands the Frontier of Superconductor Research, M. Leroux., Physical Review Applied, 11, 054005 (2019) See Science Highlight or Read online 

Inducing Magnetic Ring Currents in Non-Magnetic Aromatic Molecules: A Finding From the 25 T Split-Florida Helix , B. Kudisch, et al., Proceedings of the National Academies of Science, 117 (21), 11289-11298 (2020) See Science Highlight or Read online 

Molecular magnetic building blocks , J.-L. Liu, et al., Angew. Chem., February (2020) See Science Highlight or Read online 

Exploring Topological Semimetals in High Magnetic Fields , J. Liu, et al., Phys. Rev. B, 100, 195123 (2019) See Science Highlight or Read online 

MRI detects brain responses to Alzheimer’s disease plaque deposits and inflammation, L.M. Colon-Perez, et al., NeuroImage, 202, 116138 (2019) See Science Highlight or Read online 

Analytical tool for in vivo triple quantum MR signals, V.D. Schepkin Zeitschrift fur Medizinische Physik, 29 (4), 326-336 (2019) See Science Highlight or Read online