Skip to main content
National MagLab logo

The MagLab is funded by the National Science Foundation and the State of Florida.

Tags

Tag: Mass spectrometry

Mass Spectrometer (Single Sector)

Mass spectrometers are instruments that give scientists information on the composition of a material. Mass spectrometers can pick apart complex substances and analyze their atoms and molecules by observing how they react to magnetic fields.


Mass Spectrometer (Dual Sector)

Mass spectrometers are instruments that give scientists insight into the composition of complex materials. These spectrometers can analyze materials and identify atoms and molecules by examining how they react to magnetic fields.


Mass Spectra

Mass spectrum reveals how many isotopes of a given element are to be found in a material.


Mass Spectrometry 101

It's hard enough to weigh something as itty bitty as atoms or molecules. Factor in that they're careening by faster than Jeff Gordon on steroids, and you get an idea what scientists are up against. Using comet particles from NASA's Stardust mission as an example, this article explains how scientists measure atoms, and what kind of secrets they can uncover in the process.


What's in an Oil Drop?

It may look like a simple black blob, but an oil drop is in fact a phenomenally complex mix of immense (relatively speaking) molecules called hydrocarbons. Using a type of mass spectrometry called FT-ICR (in which the MagLab is a world leader), scientists can analyze oil and other macromolecules with amazing precision, uncovering important secrets in the process.


Targeted annotation of peptides by selective infrared multiphoton dissociation mass spectrometry

Protein oxidative damage is a common occurrence in a number of diseases, including cancer, neurodegenerative, and cardiovascular disease. Yet, little is known about its contribution to these illnesses. We developed a new technique, utilizing an infrared laser in combination with a mass spectrometer, to selectively identify sites of oxidation in complex protein mixtures. This sensitive and rapid platform may outperform current techniques and thus shed light on the involvement of oxidative damage in each of these diseases.


Ancient porphyrins indicate far earlier date for photosynthesis

Molecular fossils of chlorophyll (called porphyrins) more than 1.1 billion years old find suggest that photosynthesis began 600 million years earlier than previously established.


Functionalizing molecular nanocarbon with fluorine atoms

Researchers have discovered a new method to create encapsulated carbon nanomaterials that contain fluorine. Known as fullerenes, these nanocages are promising candidates for clean energy applications.


Researchers demonstrate method for analyzing molecules from bacteria cell walls

Scientists will be able to apply the technique to characterize similar molecules, helping develop vaccines and drugs to treat bacterial infection.


Identification of abnormal hemoglobin from human blood

Precise determination of hemoglobin sequence and subunit quantitation from human blood for diagnosis of hemoglobin-based diseases.


Corrosion Analysis on Acidic Crude Oils using FT-ICR

A new method to characterize crude oil corrosion shows that corrosion in acidic crude oils depends on the specific structures of the acid molecules, information that can help improve oil valuation and refining.


Ultrahigh Performance Molecular Imaging using the 21T ICR Magnet

Combining spatial imaging technology with ultrahigh performance FT-ICR mass spectrometry provides users with the unique ability to create tissue images of identified biomolecules. This technology will be applied to understand human health and disease.


Sunlight Produces Water-Soluble Chemicals from Asphalt

Road asphalt is made from aggregate (rocks) mixed with a "binder” from the residue remaining after extraction of gasoline and oils from petroleum crude oil. Until recently, this binder was thought to be chemically unreactive. Maglab scientists subjected a thin film of asphalt binder to simulated sunlight in the laboratory and used ultrahigh resolution mass spectrometry to reveal thousands of new, water-soluble chemicals that could be released into the environment by rainfall.


Makeup of Dissolved Organic Matter in Arctic Rivers

Researchers share new insights on the role of seasonality in dissolved organic matter (DOM) composition in large Arctic rivers. Researchers share new insights on the role of seasonality in dissolved organic matter (DOM) composition in large Arctic rivers. 


The Blood Proteoform Atlas: A reference map of proteoforms in human blood cells

A new Blood Proteoform Atlas maps 30,000 unique proteoforms as they appear in 21 different cell types found in human blood. The MagLab's 21 tesla FT-ICR mass spectrometer contributed nearly a third of the atlas' proteoforms.


A Deep Dive Into Forever Chemical Dark Matter

Using the world's most powerful mass spectrometer, scientists have developed a new method to profile complex PFAS mixtures at the molecular level, facilitating future PFAS characterization in support of environmental and human health studies.


More Accurate Diagnosis for Multiple Myeloma

New technique could lead to precise, personalized cancer diagnosis and monitoring.


Pavement Sealant Leaches Environmental Contaminants

New research shows that high concentrations of polycyclic aromatic hydrocarbons (PAHs) found in coal tar pavement sealants are oxidized into toxic, water-soluble compounds by sunlight and subsequently washed into the environment by rainwater, polluting natural water systems, negatively impacting marine ecosystems and public health. 


Mapping the KRAS Proteoform in Colorectal Cancer

Researchers used the MagLab to produce the first clarified map of KRAS proteins in colon cancer tumors. Twenty-eight additional forms of the KRAS protein were discovered, including a new form of the protein (called clipped-KRAS) that does not bind to the cell membrane, instead serving as a kind of on-off switch to regulate cell growth. These findings may help yield future cancer treatments. 


Scouring Drinking Water for Disinfection Byproducts

Identification of toxic compounds in drinking water formed through disinfection reveals more than 3500 toxic, chlorinated species that can only be observed by the MagLab's high powered analytical instruments.


Evolution of the Molecules of Life on Distant Planets

The 21T FT-ICR MS instrument enables the molecular characterization of atmospheric hazes - like that on Saturn’s moon, Titan - and water vapor to better understand the evolution of biological molecules in exoplanet atmospheres. 


Chemistry and Properties of Carbon Fiber Feedstocks from Bitumen Asphaltenes

MagLab researchers use 21 tesla ion cyclotron resonance (ICR) mass spectrometry to identify the best way to produce carbon fibers from petroleum waste products. The best carbon fibers are made from molecules that don’t contain sulfur or large polycyclic aromatic hydrocarbon structures, and these bad molecules can be converted to better precursors by mild thermal treatment.


Wildfires Reshape Soil: Impact on Nutrients and Microbes

Wildfires change the chemical composition of molecules in soil, and only the 21T FT-ICR mass spectrometer can assess the molecular composition to understand the long term impact of wildfires on soil chemistry.


ICR FAIR Data: Improves Understanding of Protein Fragmentation

Reuse of the MagLab's Ion Cyclotron Resonance facility data improved understanding of protein fragmentation and aided the design and release of new algorithms and software tools. This is representative of a new type of MagLab user: A Data User – who accesses MagLab data from public data repositories to advance independent research goals. 


MagLab’s Newest World-Record Magnet Open for Science

State-of-the-art ion cyclotron resonance magnet system offers researchers significantly more power and accuracy than ever before.


MagLab Chemist Wins Prestigious Career Award

Martha Chacón-Patiño to jump-start collaboration that could advance both the treatment of cancer and the study of petroleum.


Ancient Chlorophyll Was Pretty in Pink

Using tools at the MagLab, scientists pinpoint pigments that are the oldest on record.


MagLab Geochemist Receives High Professional Honor

Vincent Salters joins the elite ranks of American Geophysical Union fellows.


Rare "Lazarus Superconductivity" Observed in Promising Material

In a uranium-based compound once dismissed as boring, scientists watched superconductivity arise, perish, then return to life under the influence of high magnetic fields.


MagLab Scientists Capture Molecular Maps of Animal Tissue With Unprecedented Detail

Enabled by a world-record instrument, the images convey vast amounts of data that could be useful in health and pharmaceutical research.


Sun, Rain Transform Asphalt Binder Into Potentially Toxic Compounds

MagLab researchers show that exposure to sun and water causes thousands of chemicals to leach from roads into the environment.


Unraveling Pervasive PFAS 'Forever' Chemicals

Learn how the MagLab's high-field magnets are helping uncover the secrets of "forever chemicals."


FT-ICR Facility Gets New World-Record Magnet

The MagLab and the Bruker Corporation have installed the world’s first 21 tesla magnet for Fourier Transform Ion Cyclotron Resonance (FT-ICR) mass spectrometry.


Ancient Meteorite Offers Glimpse at the Origins of our Solar System

MagLab analysis finds the space rock is among the most complex materials.


Cracking the Chemical Code of the "Silly String of Death"

MagLab analysis provides new insight about the molecular composition of velvet worm slime, which has long fascinated scientists because of its remarkable qualities.


MagLab to analyze environmental impact of Maui wildfires

"We're opening up the world at a molecular level to understand how these fires are going to impact us."


MagLab Investigates the Structure of a Key COVID-19 Protein

Researchers are working to characterize the virus’ envelope protein, or E protein, believed to be key to virus activity.


MagLab Celebrates Invention that Transformed Chemistry Research, and the Man Behind it

The first mass spectrum from Fourier-Transform Ion Cyclotron Resonance happened in December 1973. The co-inventor went on to build MagLab’s world-renowned program.


MagLab Collaborates on Sustainable Jet Fuel Research

Fuel made from corn harvest waste would reduce greenhouse emissions by 70%.


Tracking the "World's Smallest Hunter"

Researchers at the National High Magnetic Field Laboratory are working to learn more about predatory bacteria called BALOs and what role they could play, from the carbon cycle in our oceans to fighting infectious disease.


Håkansson to Lead MagLab's Ion Cyclotron Resonance Facility

After years advising the lab as a member of our User and External Advisory Committees, Kristina (Kicki) Håkansson will now lead the MagLab’s ICR facility.


Finding and Fingerprinting "Forever Chemicals"

MagLab research works to find and catalog PFAS forever chemicals in our environment.


Student Makes Smashing Discovery About Meteorite

At research conducted at the MagLab, a young geochemist uncovers the surprisingly violent origins of a meteorite.


Getting to the Bottom of Deepwater Horizon’s Impact

Thanks to the MagLab’s expertise and unique instruments, a geochemist finds a treasure trove of oil-spill data buried beneath the sea.


What's in the Water?

Studying dissolved organic matter helps us better understand our diverse and changing planet.


Esprit de Char

Members of a sprawling science team piece together the puzzle of biochar, a promising tool in the fight against global warming.


Meet the 21 Tesla ICR Magnet

Used to perform complex chemical analysis, this magnet offers researchers the world's highest field for ion cyclotron resonance mass spectrometry.


Meet Jenna Luek

A young chemist studying fracking fluid talks about what it's like when science hits close to home.


Meet Nur Gueneli

Paleobiogeochemist (no, that's not a typo) Nur Gueneli put some ancient dirt into our magnets to learn more about the Earth's earliest inhabitants.


Hemoglobin

ICR technology helps identify new kinds of hemoglobin abnormalities.


Amy McKenna's Science Story

Chemist Amy McKenna describes her path to science and to the MagLab


Journey to Tibet

MagLab scientist Yang Wang joins an expedition to unearth the oldest woolly rhino fossils ever found.


Ryan Rodgers Makes it Happen

With determination, confidence and a top-notch team, this MagLab chemist exposed the complex secrets of crude oil, busting open a vast, new field.



Last modified on 10 August 2022