Magnet Science & Technology

Series Connected Hybrid for the MagLab

The MagLab has successfully tested the 36 tesla SCH magnet, available to users since 2017.

Series Connected Hybrid for the MagLab

Our Capabilities

We are the world leader in building resistive, high-temperature superconducting, hybrid and cable-in-conduit magnets.

CICC magnet shop.

Our Facilities

We do microanalysis, components testing and mechanical and physical properties testing.

Transmission Electron Microscope

Team 32 T

Pioneering a new superconducting tape, the lab is buidling an all-superconducting magnet that will shatter all previous records.

Team behind the 32 tesla all superconducting magnet.

The Platypus Project

This high-field, high-homogeneity demonstration magnet using Bi-2212 round wire could be the first mammal in the age of NMR dinosaurs.

Design of Platypus magnet

The MS&T Division is a world leader in building high-field magnet systems for scientific exploration in the biosciences, chemistry, materials science, condensed matter physics and mass spectrometry. Over the last two decades the division has developed more than 20 magnet systems and has held numerous world records, including our 45 tesla hybrid magnet and our 900 MHz NMR magnet.

The division builds systems for the MagLab and works with industry to develop the technology to improve high-field magnet manufacturing capabilities. The division's highly experienced engineers push the state of the art beyond what is currently available in high field magnet systems through research and development. The division also contracts with other institutions to design one-of-a-kind magnet systems; MagLab technology has been adopted by some 20 labs worldwide.


Current Magnet Projects

32T Superconducting magnet detail

32 Tesla All-Superconducting Magnet

Successfully tested in 2017, this magnet is the world's most powerful superconducting magnet — by a long shot.

Read more …

MagLab Series Connected Hybrid

Series Connected Hybrid for the MagLab

After a decade of design and construction, the Series Connected Hybrid was successfully tested in November 2016. After about one year of commissioning, the SCH was opened for external user operation in January 2018.

Read more …

HBZ Series Connected Hybrid design detail

Series Connected Hybrid for HZB

In 2014, the MagLab completed the world's strongest magnet for neutron scattering for the Helmholtz Centre Berlin (HZB). Its field is 47 percent stronger than that of the previous record-holder, and it offers twice as much scattering angle as other magnets available for neutron scattering.

Read more …


Latest Science Highlight

  • Studying the microstructure of Glidcop® AL-60 conductor
    15 August 2022
    Studying the microstructure of Glidcop® AL-60 conductor

    The MagLab's ultrahigh-field pulsed magnets require materials with both high mechanical strength and high electrical conductivity. One of these materials is Glidcop® AL-60, an alumina particle strengthened copper. This research studies the microstructure of this material to improve the construction and endurance of these magnets.


See more MS&T Science Highlights

Featured Publications

Microstructure of Glidcop AL-60

Xin, Y., et al., IEEE Transactions on Applied Superconductivity, 32 (6), 7100105 (2022) See Science Highlight or Read online …

Testing the Critical Current of High-Temperature-Superconducting REBCO Cables Using a Superconducting Transformer

Yu, H., et al., IEEE Transactions on Applied Superconductivity, 30 (4), 5500204 (2020) See Science Highlight or Read online …

In-House Fabrication of Outsert Coil 1 for the 100T Pulsed Magnet

Nguyen, D. N., et al., IEEE Transactions on Applied Superconductivity,, v 26, n 4, June 2016 See Science Highlight or Read online …

Ceramic Insulation for High-Temperature Superconducting Wire

Kandel, H., et al., Supercond. Sci. Technol., 28 (3) 035010 (2015) See Science Highlight or Read online …

See more MS&T publications

For more information contact Mark Bird.

Last modified on 15 August 2022