Research Initiatives

MATERIALS
Scientists use our magnets to explore semiconductors, superconductors, newly-grown crystals, buckyballs and materials from the natural world — research that reveals the secret workings of materials and empowers us to develop new technologies.

ENERGY
Scientists here are working to optimize petroleum refining, advance potential bio-fuels such as pine needles and algae, and fundamentally change the way we store and deliver energy by developing better batteries.

LIFE
With the world’s strongest MRI magnet, scientists here study everything from living animals to individual cells, from proteins to disease-fighting molecules found in plants and animals — work that could improve treatment of AIDS, cancer, Alzheimer’s and other diseases.
Latest Science Highlights
-
Sunlight Produces Water-Soluble Chemicals from Asphalt
29 March 2021
Road asphalt is made from aggregate (rocks) mixed with a "binder” from the residue remaining after extraction of gasoline and oils from petroleum crude oil. Until recently, this binder was thought to be chemically unreactive. Maglab scientists subjected a thin film of asphalt binder to simulated sunlight in the laboratory and used ultrahigh resolution mass spectrometry to reveal thousands of new, water-soluble chemicals that could be released into the environment by rainfall.
-
Tracking the Potential for Damage in Nb3Sn Superconducting Coils from the Hardness of Surrounding Copper
26 March 2021
High field superconductor magnets greater than 10 T made from brittle Nb3Sn superconducting wires need special attention to their assembly, strength and endurance. This new study of damage in Nb3Sn superconducting wire from prototype accelerator coils built at CERN provides a path to designing better superconductor cables for the next generation of higher field accelerator magnets.
-
Broadening Participation in DC Field Facility by Bridging a Research Infrastructure Gap
26 March 2021
Researchers based at four-year colleges and universities outside of the Research-1 (R1) tier face more obstacles to performing research than their colleagues from R1 universities or national laboratories with robust research infrastructures. Recognizing the need to bridge this infrastructure gap, the MagLab's DC Field Facility expanded access by adding two low-field magnet systems. These "on-ramp" systems facilitate critical access to materials research instrumentation by faculty and students from non-R1 institutions.
Featured Publications
Sunlight Produces Water-Soluble Chemicals from Asphalt, S. F. Niles, et al., Environmental Science and Technology, 54 (24), 8830-8836 (2020), Dataset, See Science Highlight or Read online
Tracking the Potential for Damage in Nb3Sn Superconducting Coils from the Hardness of Surrounding Copper, S. Balachandran, et al., Superconductor Science and Technology, 34, 025001 (2021) See Science Highlight or Read online
Broadening Participation in DC Field Facility by Bridging a Research Infrastructure Gap, C. Dhital, et al., Physical Review B, 102, 224408 (2020) See Science Highlight or Read online
Using Magnetic Resonance to Probe Lipid Synthesis in Response to Ketogenic Diet , M.S. Muyyarikkandy, et al., The FASEB Journal, 2020;00:1–18 See Science Highlight or Read online
Spontaneous "Valley Magnetization" in an Atomically-thin Semiconductor, J. Li, et al., Phys. Rev. Lett., 125, 147602 (2020) See Science Highlight or Read online
Spin-Charge Interconversion at Near-Terahertz Frequencies, P. Vaidya, Science, 368, 160-165 (2020) See Science Highlight or Read online
Tunable Weyl Fermions in Chiral Tellurene in High Magnetic Fields, G. Qiu, Nature Nanotechnology, 15, 585–591 (2020) See Science Highlight or Read online
Deuterium Magnetic Resonance Can Detect Cancer Metabolism by Measuring the Formation of Deuterated Water, R. Mahar, Nature Scientific Reports, 10 (1), 8885 (2020) See Science Highlight or Read online
High magnetic fields reveal hidden magnetism in a cuprate superconductor, M. Frachet, Nature Physics, 16, 1745-2481 (2020) See Science Highlight or Read online
Smart Non-Linear Transport Technique Expands the Frontier of Superconductor Research, M. Leroux., Physical Review Applied, 11, 054005 (2019) See Science Highlight or Read online
Inducing Magnetic Ring Currents in Non-Magnetic Aromatic Molecules: A Finding From the 25 T Split-Florida Helix , B. Kudisch, et al., Proceedings of the National Academies of Science, 117 (21), 11289-11298 (2020) See Science Highlight or Read online
Molecular magnetic building blocks , J.-L. Liu, et al., Angew. Chem., February (2020) See Science Highlight or Read online
-
Safety at the Lab
-
What Scientists Do at the MagLab