100 Tesla Multi-Shot Magnet

100 tesla multi-shot magnet. 100 tesla multi-shot magnet.

The Pulsed Field Facility has the world’s only scientific program that has delivered scientific results in non-destructive magnetic fields up to and exceeding 100 tesla.

Fields of this strength have proved to be an indispensable tool for mapping the Fermi surface topology of underdoped high temperature superconductors and identifying new types of order in magnetic materials. A broad variety of experimental techniques can be performed in fields extending to 100 tesla, including contactless conductivity, magnetotransport, magnetization, magnetostriction, magnetic torque and optics. We specialize in conducting multiple experiments in parallel in order to make the most effective use of the strong magnetic fields, which cost considerably more to produce then conventional pulsed magnetic fields.

Request time for this instrument.


  • Specs

  • Documents

  • Measurement Techniques

  • Maximum Field: 100 tesla
  • Bore Diameter: 10 mm
  • Pulse Length: 25 ms
  • Temperature Range: 400 mK - 300 K
  • Homogeneity: Homogeneity of 1% can be obtained within 22 mm from the center of this magnet.

Related Publications

Below are the most recent publications associated with this magnet. View the pdfentire list.


B. J. Ramshaw, K. A. Modic, Arkady Shekhter, Yi Zhang, Eun-Ah Kim, Philip J. W. Moll, Maja D. Bachmann, M. K. Chan, J. B. Betts, F. Balakirev, A. Migliori, N. J. Ghimire, E. D. Bauer, F. Ronning & R. D. McDonald Quantum limit transport and destruction of the Weyl nodes in TaAs Nature Communications 9, 2217 (2018).

P. Giraldo-Gallo, J. A. Galvis, Z. Stegen, K. A. Modic, F. F. Balakirev, J. B. Betts, X. Lian, C. Moir, S. C. Riggs, J. Wu, A. T. Bollinger, X.He, I. Božović, B. J. Ramshaw, R. D. McDonald, G. S. Boebinger, A. Shekhter Scale-invariant magnetoresistance in a cuprate superconductor Science 361, 479–481 (2018).


Zengwei Zhu, Jinhua Wang, Huakun Zuo, Benoît Fauqué, Ross D. McDonald, Yuki Fuseya & Kamran Behnia Emptying Dirac valleys in bismuth using high magnetic fields Nature Communications 8, 15297 (2017).

Modic, K.A., Ramshaw, B.J., Betts, J.B., Breznay, N. P., Analytis, J. D., McDonald, R. D., and Shekhter, A. Robust spin correlations at high magnetic fields in the harmonic honeycomb iridates. Nature Communications 8, 180 (2017).

Philip J. W. Moll , Toni Helm, Shang-Shun Zhang, Cristian D. Batista, Neil Harrison, Ross D. Mcdonald, Laurel E. Winter, B. J. Ramshaw, Mun K. Chan, Fedor F. Balakirev, Bertram Batlogg, Eric D. Bauer and Filip Ronning Emergent magnetic anisotropy in the cubic heavy-fermion metal CeIn3 NPJ Quantum Materials 46 (2017).

Y. Kasahara, Y. Takeuchi, R.H. Zadik, Y.Takabayashi, R.H. Colman, R.D. McDonald, M. J. Rosseinsky, K. Prassides & Y. Iwasa Upper critical field reaches 90 Tesla near the Mott transition in fulleride superconductors Nature Communications 8, 14467 (2017).

Jaime, M; Saul, A; Salamon, M; Zapf, VS; Harrison, N; Durakiewicz, T; Lashley, JC; Andersson, DA; Stanek, CR; Smith, JL; and Gofryk, K. Piezomagnetism and magnetoelastic memory in uranium dioxide Nature Communications 8, 99 (2017).

Wolgast, S; Eo, YS; Sun, K; Kurdak, C; Balakirev, FF; Jaime, M; Kim, DJ; and Fisk, Z. Reduction of the low-temperature bulk gap in samarium hexaboride under high magnetic fields Physical Review B 95, 245112 (2017).

Clune, A. J., Hughley, K. D., Lee, C., Abhyankar, N., Ding, X., Dalal, N. S., Whangbo, M.-H., Singelton, J., and Musfeldt, J. L. Magnetic field-temperature phase diagram of multiferroic [(CH3)2NH2]Mn(HCOO)3 Physical Review B 96, 104424 (2017).

Brambleby, J.; Goddard, P.A.; Singleton, J.; Jaime, M.; Lancaster, T.; Huang, L.; Wosnitza, J.; Topping, C.V.; Carreiro, K.E.; Tran, H.E.; Manson, Z.E. and Manson, J.L. Adiabatic Physics of an Exchange-coupled Spin-dimer System: Magnetocaloric Effect, Zero-point Fluctuations, and Possible Two-dimensional Universal Behavior Physical Review B 95 (2), 024404 (2017).

Brambleby, J.; Manson, J.L.; Goddard, P.A.; Stone, M.B.; Johnson, R.D.; Manuel, P.; Villa, J.A.; Brown, C.M.; Lu, H.; Chikara, S.; Zapf, V.; Lapidus, S.H.; Scatena, R.; Macchi, P.; Chen, Y.-S.; Wu, L.-C, and Singleton, J. Combining Microscopic and Macroscopic Probes to Untangle the Single-Ion Anisotropy and Exchange Energies in an S = 1 Quantum Antiferromagnet Physical Review B 95, 134435 (2017).

Zhu, Z., McDonald, R. D., Shekhter, A., Ramshaw, B. J., Modic, K. A., Balakirev, F. F. , Harrison, N Magnetic Field Tuning of an Excitonic Insulator Between the Weak and Strong Coupling Regimes in Quantum Limit Graphite Scientific Reports Vol. 7, 1733, (2017).

Staff Contact

Last modified on 9 August 2019