Using an advanced technique, scientists discover that one of the most common substances in our everyday lives — glass — is more complex than we thought.

CrgA, a key Mycobacterium tuberculosis cell division protein that recruits five other proteins to the cell division apparatus has been structurally characterized using oriented sample and magic angle spinning solid state NMR. The protein has two transmembrane helices and an intrinsically disordered N-terminus. Binding sites have been identified for it's binding partners. Evaluating these binding sites may lead to effective drugs for either promoting and inhibiting cell division, both of which are of prime interest for the treatment of tuberculosis.

Observing growth processes in classical alloys is extremely difficult; scientists overcame this by studying quantum systems.

Scientists gain new insights into how protective shells form around retrovirus genomes, advancing the search for drugs that will combat them.

Scientists can now observe lithium moving through an electrolyte in real time.

Working with a solid form of helium at ultra-low temperatures, scientists observed a quantum phase separation that may shed light on analogous processes in classical systems like metal alloys.

Research sheds new light on the formation of harmful structures that can lead to neurodegenerative diseases.