Scientists have discovered and characterized an unusual, complex natural product produced in worms, a finding that suggests a whole body of discoveries awaits.

Using an advanced technique, scientists discover that one of the most common substances in our everyday lives — glass — is more complex than we thought.

This week at the lab, Patricia Medeiros is fishing for answers using one of the lab’s ion cyclotron resonance (ICR) magnets.

Medeiros (pictured above, standing at right, with her grad students), an assistant professor of marine organic geochemistry at the University of Georgia (UGA), arrived Monday morning with one colleague, two graduate students, dozens of water samples from estuaries around Georgia’s Sapelo Island, and lots of questions. The team will spend the week analyzing the molecular composition of the dissolved organic matter (DOM) in the water, using the ICR Facility’s 9.4 tesla passively shielded magnet.

In collaboration with UGA microbiologist Mary Ann Moran, Medeiros is studying what different communities of bacteria are doing with this DOM. They are particularly interested in how bacteria chemically transform carbon from the ocean, a key step in the marine carbon cycle that is still not well understood.

That knowledge could help us understand and better prepare for future changes in the climate, said Medeiros. "We don’t know too much about how microbes interact with DOM. We do know that DOM plays an important role in the global carbon cycle, however."


By Kristen Coyne.

Scientists analyzing maize affected by southern leaf blight determine the molecular structures of so-called “death acids.”

The HiPER spectrometer may not feature the strongest magnet at the MagLab, but it wins hands down in the "coolest looking" category. This powerful tool, from which protrude 29 black, kooky cones, is now open to scientists.

This week at the lab, one of the instrument's first users, biophysicist Brian Hales of Louisiana State University, is here sizing up proteins with the HiPER (pronounced "hyper") spectrometer, which is shorthand for high-power pulsed W-band electron paramagnetic resonance (EPR) .

The "high-power" part refers to the instrument's recently upgraded 1-kilowatt amplifier. Along with other revolutionary design innovations, it makes possible the machine's game-changing sensitivity.

Depending on the technique used with the instrument, this sensitivity is orders of magnitude greater than what was previously available to scientists. This means scientists can run experiments on a material even if they have a just a teeny, tiny bit of it. This capability is extremely significant in structural biology (among other research areas), when scientists might have just a smidgeon of the protein they want to characterize. 

"Sensitivity is a major concern," said Likai Song, a research scientist with the lab's Electron Magnetic Resonance Facility who works closely with the 9-tesla HiPER spectrometer. "Improved sensitivity opens the door to a lot of applications."

The instrument is not only expected to be a great boon for scientists like Hales who study proteins, but it will also impact all other research areas in the lab, including material science, physics and chemistry, said Song.


Text by Kristen Coyne. Photo by Stephen Bilenky.

With the help of the world's strongest MRI machine, a scientist uses a novel technique to pinpoint ground zero for a migraine.

A MagLab chemist has determined how the flu virus tunnels into cells, paving the way for new treatments.

Andreas Neubauer took the extended stay option during his recent trip to the MagLab. After all, you can't rush art — especially when it's mixed with science.

Ten years ago the 900 Ultra-Wide Bore magnet became available to an international user community for Nuclear Magnetic Resonance spectroscopy and Magnetic Resonance Imaging at the National High Magnetic Field Lab. Since then 69 publications have been published from this instrument spanning many disciplines and the number of publications per year continues to increase with 26 in just the past 18 months demonstrating that state of the art data continues to be collected on this superb magnet.

We describe a method for de novo protein sequencing with high accuracy and multiple levels of confidence. Samples are digested separately by two proteases, Lys-C and Lys-N. The resulting complementary pairs of ions combine to improve confidence in the identification.

Page 4 of 6