Precise determination of hemoglobin sequence and subunit quantitation from human blood for diagnosis of hemoglobin-based diseases.

Researchers at the National MagLab will study the role sodium plays in this painful disease and test treatments that could offer relief.

Three variants of the coral species A cervicornis were found to have unique metabolic signatures that can be distinguished by NMR spectroscopy. Differing levels of the metabolite trimethylamine-N-oxide, an important compound that protects against nitrogen overload, can distinguish the three variants studied. Understanding how species vary metabolically, and how that translates to species survival in stressed environments, may help us to establish desirable traits that could help with restoration and other interventions.

With advanced techniques and world-record magnetic fields, researchers have detected new MRI signals from brain tumors.

Scientists will be able to apply the technique to characterize similar molecules, helping develop vaccines and drugs to treat bacterial infection.

With unprecedented sensitivity and resolution from state-of-the-art magnets, scientists have identified for the first time the cell wall structure of one of the most prevalent and deadly fungi.

This work investigates a series of oxoiron complexes that serve as models towards understanding the mechanism of catalysis for certain iron-containing enzymes.

Molecular fossils of chlorophyll (called porphyrins) more than 1.1 billion years old find suggest that photosynthesis began 600 million years earlier than previously established.