This week at the lab, scientists are using a brand new tool to tweak the crystal structure of materials in the hopes of imbuing them with potentially useful properties.

Using a technique called pulsed laser deposition, physicist Christianne Beekman is creating thin films of materials less than 100 nanometers thick — one one-thousandth the thickness of a sheet of paper. The process involves vaporizing a target material with a class 4 laser, generating a colorful plume of plasma. When that plasma settles on a waiting piece of substrate, the result is a thin film that alters the original structure of the material in a way that can induce new magnetic or electrical properties.

“Sometimes in these complex materials a slight change in the interatomic distance could tip it over to an entirely different phase,” said Beekman. The original “bulk” material might, for example, change from a metal to an insulator in its thin film form (or vice versa) – a nifty trick with potentially powerful applications in electronics and computers. Beekman is also looking at materials that might make excellent solar cells, if photons hitting thin-film versions of them turn out to generate more than one electron per photon.

After creating thin films in this new instrument, Beekman and her team will use MagLab magnets and other facilities to investigate their properties.

“The ability to grow high-quality complex oxide thin films allows us to accelerate materials discovery,” said Beekman, “which will lead to the technologies of tomorrow.”


Video by Stephen Bilenky / Text by Kristen Coyne

Experiment marks first time an iron-based high-temperature superconductor works as a strong magnet.

Reduced-size prototype coils for the 32 T all-superconducting magnet have been successfully tested. The results include the generation of 27 T, which is a record for superconducting magnets.

An understanding of the formation mechanism of endohedral metallofullerenes may pave the way towards targeted synthesis of these nanomaterials, which are attractive for use in biomedicine and renewable energy. Their bottom-up synthesis is investigated and charge transfer from the encapsulated metal to carbon cage is determined to play a key role in formation.

Targeted theranostic nanovehicles are capable of targeting cerebrovascular amyloid associated with Alzheimer’s Disease and serving as early diagnostic and therapeutic agents across multiple imaging modalities. Assessed in animal models at 21.1 T, these nanovehicles were loaded with gadolinium-based magnetic resonance imaging (MRI), iodine-based single photon emission computerized tomography (SPECT) or fluorescent contrast agents as well as anti-inflammatory and anti-amyloidogenic pharmaceuticals to demonstrate targeted enhancement and treatment in cerebral amyloid angiopathy.

Researchers using pulsed field gradient NMR at the AMRIS facility found clear evidence for molecular single file diffusion of xenon gas confined inside model nanotube systems.

Page 2 of 2