The work by Dagan et. al. explores the emergence and coexistence of superconductivity and magnetism at the interface between insulating, non-magnetic LaAlO3 and SrTiO3 nanowires at low temperatures. The effect of the antiparallel magnetic order on the resistance of the 50 nm wide patterned wires follows the form of giant magnetoresistance (GMR) at low applied magnetic fields.

With a new $10 million federal grant, an interdisciplinary group of researchers will explore the mysteries of the world’s most radioactive elements.

Just as all matter may exist in the three famous everyday phases — solid, liquid and gas — complex materials may exist in a combination of subtle phases not apparent to the eye. This finding shows that a class of materials, which all contain copper oxide and are known to exhibit a variety of subtle phases, may have even more complexity than thought. And, in fact, some phases are brought about not by changes in temperature but magnetic field.

Team opens new path for understanding hidden order.

Comprehensive angle-resolved quantum oscillation measurements on YBa2Cu3O6+x in magnetic fields approaching 100 tesla are used to address longstanding problem of the normal state electronic of underdoped high temperature superconducting cuprates. The symmetry of the Fermi surface points uniquely to its reconstruction by biaxial ordering of the charge and bond degrees of freedom.

Black Phosphorus is a layered semiconducting material that can be thinned down to produce atomically thin crystals. These resulting crystals produce a two-dimensional electron gas 2DEG from the resulting quantum confinement of the electrons. Significant differences exist between the physical properties of the atomically thin crystals versus that of the bulk crystals. Zhang and co-workers were able to observe quantum oscillations  in black phosphorus allowing the characteristics of the 2DEG in atomically thin crystals to be elucidated.

A team of researchers from Université de Sherbrooke, Laboratoire National des Champs Magnétiques Intenses (LNCMI), University of British Columbia, Canadian Institute for Advanced Research and the National High Magnetic Field Laboratory discovered a previously unobserved portion of the Fermi surface in underdoped YBCO. This discovery provides further evidence to support the picture of the Fermi surface being reconstructed as a result of charge density wave order developing in underdoped YBCO prior to the material entering the superconducting state at lower temperatures.

Controlled by electron interactions, the Mott transition is accompanied by a reduction in the volume of the atomic lattice.

Scientists discover that a new titanium compound is four times harder — and can last much longer — than what is currently being used for medical implants.

Scientists theorize, and demonstrate, that a tiny shock wave of oxygen is the key to how nanoscale transistors work.

Page 1 of 2