Tag: 45-tesla hybrid magnet
What happens when different materials are released in the finge fields of the world's strongest magnet? It's a race that appears to defy gravity, but is instead an amazing way to see the effect of eddy currents on metals.
What happens when you throw a magnetic football next to the world's strongest magnet? Touchdown!
This work provides important insight into one of the parent materials of iron-based superconductors.
Scientists revealed previously unobserved and unexpected FQH states in monolayer graphene that raise new questions regarding the interaction between electrons in these states.
Studies of uranium ditelluride in high magnetic fields show superconductivity switching off at 35 T, but reoccurring at higher magnetic fields between 40 and 65 T.
A nematic phase is where the molecular/atomic dynamics show elements of both liquids and solids, like in liquid crystal displays on digital watches or calculators. Using high magnetic fields and high pressure, researchers probed the electronic states of an iron-based superconductor and found that its nematic state weakened superconductivity.
Materials with magnetoelectric coupling - a combination of magnetic and electric properties - have potential applications in low-power magnetic sensing, new computational devices and high-frequency electronics. Here, researchers find a new class of magnetoelectric materials controlled by spin state switching.
This research clarifies fundamental relationships between magnetism, superconductivity and the nature of the enigmatic “pseudogap state" in cuprate superconductors. The discovery provides an additional puzzle piece in the theoretical understanding of high-temperature superconductors - a key towards improving and utilizing these materials for technological applications.
Topology, screws, spin and hedgehogs are words not normally found in the same scientific article but with the discovery of Weyl fermions in thin tellurine films they actually belong together. The work in this highlight describes how Qui et. al. used the unique properties of tellurine and high magnetic fields to identify the existence of Weyl fermions in a semiconductor. This discovery opens a new window into the intriguing world to topological materials.
Gallium nitride (GaN) and Niobium nitride (NbN) are widely used in today's technologies: GaN is used to make blue LEDs and high-frequency transistors while NbN is used to make infrared light detectors. This experiment explores whether a nitride-based device may be relevant for quantum technologies of the future.
In high-temperature superconductors, a region exists between the superconducting and normal states known as the pseudogap state. Using the 45T hybrid magnet, scientists have determined that magnetism plays a previously unknown role in the development of the pseudogap phase.
Kagome is the name given to the traditional Japanese star-like pattern to form baskets. The same geometric pattern can be found in the crystal structure of certain materials and can give rise to frustrated magnetism, charge density waves, superconductivity and topological properties. In a star turn for geometry, the same pattern which has given strength and beauty to weaving for thousands of years is used by nature to produce materials with complex electronic behavior.
Scientists used high magnetic fields and low temperatures to study crystals of URu2–xFexSi2. Using these conditions, they explored an intriguing state of matter called the "hidden order phase" that exhibits emergent behavior. Emergent behavior occurs when the whole is greater than the sum of its parts, meaning the whole has exciting properties that its parts do not possess; it is an important concept in philosophy, the brain and theories of life. This data provide strict constraints on theories of emergent behavior.
Because of such desirable properties as high mechanical strength and electrical conductivity, Cu–Ag nano-structured sheets are used, not only in high field DC magnets, but also in the insert for our 45 T hybrid magnet. Because the property anisotropy of these sheets must be considered in these applications, we have now further studied this anisotropic behavior, evaluated the strain-hardening or strain-softening capacity of these sheets, and correlated this capacity with their microstructure.
Because of such desirable properties as high mechanical strength and electrical conductivity, Cu–Ag nano-structured sheets are used, not only in high field DC magnets, but also in the insert for our 45 T hybrid magnet. Because the property anisotropy of these sheets must be considered in these applications, we have now further studied this anisotropic behavior, evaluated the strain-hardening or strain-softening capacity of these sheets, and correlated this capacity with their microstructure.
Recent measurements of superconducting tapes in the MagLab's 45-tesla hybrid magnet shows that the power function dependence of current on magnetic field remains valid up to 45T in liquid helium, while for magnetic field in the plane of the tape conductor, almost no magnetic field dependence is observed. Thus design of ultra-high-field magnets capable of reaching 50T and higher is feasible using the latest high-critical current density REBCO tape.
This magnet combines a superconducting magnet of 11.5 tesla with a resistive magnet of 33.5 tesla.
Nicolas Doiron-Leyraud of Canada's Université de Sherbrooke talks about his recent experiments on cuprate superconductors, why he chose physics over philosophy, and what makes the MagLab a great place to do science.
More Tags
- Biology
- Biochemistry
- Chemistry
- Cryogenics
- Dynamic nuclear polarization
- Energy research
- Engineering
- Environment
- Geochemistry
- Health research
- Life research
- Magnet technology
- Mass spectrometry
- Materials research
- NMR and MRI
- Physics
- Postdocs and grad students
- Quantum computing
- Science & Art
- Semiconductors
- STEM education
- Superconductivity
- Universe
- 100-tesla multi-shot magnet
- 32-tesla superconducting magnet
- 45-tesla hybrid magnet
- 900MHz magnet
- 36-tesla SCH
- 25-tesla split magnet
- 41-tesla resistive magnet
- 21-tesla ICR magnet
- 600 MHz 89 mm MAS DNP System