A new 17O solid-state NMR technique, employed on the highest-field NMR spectrometer in the world (the 36 T Series Connected Hybrid), identifies water molecules in different layers of a model membrane for the first time.

The MagLab's ultrahigh-field pulsed magnets require materials with both high mechanical strength and high electrical conductivity. One of these materials is Glidcop® AL-60, an alumina particle strengthened copper. This research studies the microstructure of this material to improve the construction and endurance of these magnets.

A $1.9 million will explore how online STEM programs can yield improved STEM identity in girls.

MRI scans taken after a stroke show brightness around the injury, the origins of which have been a long-standing and vexatious mystery for scientists. This work suggests these MRI signal changes result from fluid changes in glial cell volumes, results that could advance our ability to distinguish reversible and irreversible stroke events or provide a better understanding for other disorders such as Parkinson's, Alzheimer's, and mood or sleep disorders. 

Electron spin coherence was enhanced through engineering of so-called clock transitions in molecular magnets, an advance in quantum computing strategies. The use of clock transitions to enhance quantum coherence is employed in trapped-ion quantum computers, an approach that may also be viable in magnetic molecules to yield next-generation quantum technologies. 

Large superconducting magnets need multi-conductor cables, which act like multi-lane freeways to allow electricity to switch lanes if one gets blocked. Here cross-sectional images of CORC wires reveal insights to improve the contact between conductors. 

World's strongest superconducting magnet celebrated as a top 100 revolutionary technology. 

An X-ray diffraction instrument is available at the 25 Tesla Florida Split Coil Magnet at the NHMFL and allows studying magnetostructural transformations in the temperature range ~10 K - 300 K.