Search results (177)

Name Description
Sunlight converts plastics into diverse chemical mixtures

Sunlight can chemically transform plastics from consumer plastic bags into complex chemical mixtures that leach into the ocean. Understanding the impact of plastic pollution requires advanced analytical techniques that can identify transformed plastic molecules in water samples, and requires instrumentation only available at the Maglab.

Unusual high-field state discovered in mineral atacamite

Scientists at the Pulsed Field Facility recently found that applying an intense magnetic field to the mineral atacamite (a "frustrated" quantum magnet) yields unusual behavior associated with a novel state of matter known as quantum spin liquid.

Resilient Bi-2212 Round Wire

Researchers studied the mechanics of supercurrent flow in state-of-the-art Bi-2212 superconducting round wires and learned that the microstructure of the superconducting filaments is inherently resilient, work that could open the door to new opportunities to raise supercurrent capacity of Bi-2212 round wires.

Linear-In Temperature Resistivity From Isotropic Planckian Scattering Rate

Electrons in metals behave like chaotic bumper cars, crashing into each other at every opportunity. While they may be reckless drivers, this result demonstrates that this chaos has a limit established by the laws of quantum mechanics. Using the 45T hybrid magnet and a crystal of high-temperature superconducting material, scientists were able to measure this boundary using high fields to bend electron trajectories to their will.

Advanced Microscopy for Better Nanostructural Insights in Bi-2212 Round Wires

Researchers working to push the high temperature superconducting material (Bi-2212) to the forefront of superconducting magnet technology have used novel characterization methods to understand the complex relationship between its processing and its superconducting properties, specifically its current carrying capabilities. 

Testing REBCO Critical Current Using a Superconducting Transformer

A new device enables the testing of superconducting cables to high current without the high helium consumption associated with traditional current leads. This superconducting transformer will play an important role in testing cables needed for next-generation superconducting magnets.

First Spin Coherence Measurements in the MagLab's 32T Superconducting Magnet

The MagLab's 32 T all-superconducting magnet is now serving users at full field. An early experiment in the magnet identified an important milestone on the road to quantum computers.

New High-Magnetic-Field Thermometers for Sub-Millikelvin Temperatures

This highlight focuses on the development of new thermometry required to study quantum materials and phenomena in high magnetic fields and at ultralow temperatures. The team has demonstrated that exceedingly small quartz tuning forks bathed in liquid 3He maintain a constant calibration that is magnetic field independent, thereby opening the use of these devices as new sensors of the response of quantum systems.

A New Method for Understanding Dynamic Nuclear Polarization

A new method to study how the nuclei of atoms “communicate” with one another in the presence of unpaired electron spins has been developed at the MagLab. Known as hyperpolarization resurgence (HypRes), this method benefits and expands the application of a revolutionary technique known as dynamic nuclear polarization (DNP), which provides enormous signal enhancements in nuclear magnetic resonance (NMR) experiments.

Magnetoelastic Coupling in the Multiferroic BiFeO3

High-resolution electron magnetic resonance studies of the spin-wave spectrum in the high-field phase of the multiferroic Bismuth ferrite (BiFeO3) reveal direct evidence for the magnetoelastic coupling through a change in lattice symmetry from rhombohedral to monoclinic. This study provides important information for designing future spintronics devices based on BiFeO3.

Page 1 of 18