Search results (170)

Name Description
New High-Magnetic-Field Thermometers for Sub-Millikelvin Temperatures

This highlight focuses on the development of new thermometry required to study quantum materials and phenomena in high magnetic fields and at ultralow temperatures. The team has demonstrated that exceedingly small quartz tuning forks bathed in liquid 3He maintain a constant calibration that is magnetic field independent, thereby opening the use of these devices as new sensors of the response of quantum systems.

A New Method for Understanding Dynamic Nuclear Polarization

A new method to study how the nuclei of atoms “communicate” with one another in the presence of unpaired electron spins has been developed at the MagLab. Known as hyperpolarization resurgence (HypRes), this method benefits and expands the application of a revolutionary technique known as dynamic nuclear polarization (DNP), which provides enormous signal enhancements in nuclear magnetic resonance (NMR) experiments.

Magnetoelastic Coupling in the Multiferroic BiFeO3

High-resolution electron magnetic resonance studies of the spin-wave spectrum in the high-field phase of the multiferroic Bismuth ferrite (BiFeO3) reveal direct evidence for the magnetoelastic coupling through a change in lattice symmetry from rhombohedral to monoclinic. This study provides important information for designing future spintronics devices based on BiFeO3.

Exchange Bias Between Coexisting Antiferromagnetic and Spin-Glass Orders

A pane of window glass and a piece of quartz are both are transparent to light, but their atomic structure is very different. Quartz is crystalline at the atomic level while window glass is amorphous. This can also occur with magnetism at the atomic level in solids containing magnetic states such as antiferromagnetism (ordered) and spin-glass (disorded). This work describes the interaction (exchange bias) between ordered and disordered magnetic states and how the magnetic properties of the material are altered as a result.

First Science from the 75T Duplex Magnet

Duplex magnets use two independent coils powered by capacitor banks to reduce the driven voltages and provide more design flexibility to maximize the generated magnetic fields. The Pulsed Field Facility developed such a duplex magnet to generate magnetic field up to 76.8 Tesla using existing 16-kV, 4-MJ capacitor bank (cap-bank) that now provides important information on a new state of matter in YbB12.

Tracking the Potential for Damage in Nb3Sn Superconducting Coils from the Hardness of Surrounding Copper

High field superconductor magnets greater than 10 T made from brittle Nb3Sn superconducting wires need special attention to their assembly, strength and endurance. This new study of damage in Nb3Sn superconducting wire from prototype accelerator coils built at CERN provides a path to designing better superconductor cables for the next generation of higher field accelerator magnets.

Broadening Participation in DC Field Facility by Bridging a Research Infrastructure Gap

Researchers based at four-year colleges and universities outside of the Research-1 (R1) tier face more obstacles to performing research than their colleagues from R1 universities or national laboratories with robust research infrastructures. Recognizing the need to bridge this infrastructure gap, the MagLab's DC Field Facility expanded access by adding two low-field magnet systems. These "on-ramp" systems facilitate critical access to materials research instrumentation by faculty and students from non-R1 institutions.

Strong Magnetic Coupling in Molecular Magnets through Direct Metal-Metal Bonds

An exciting advance of interest to future molecular-scale information storage. By using the uniquely high frequency Electron Magnetic Resonance techniques available at the MagLab, researchers have found single molecule magnets that feature direct metal orbital overlap (instead of weak superexchange interactions), resulting in behavior similar to metallic feromagnets that is far more suitable to future technologies than previous molecular magnets.

Ninety Teslas Peek Under the Superconducting Dome of a High-Temperature Superconductor

Physics does not yet know why copper-based superconductors (cuprates) conduct electrical current without dissipation at unprecedentedly high temperatures. Ultra high magnetic fields are used here to suppress superconductivity in a cuprate near absolute zero temperature, revealing an underlying transition to an electronic phase that might be the cause of the superconductivity.

Special High-Strength Conductor Testing Improves Future Pulsed Magnet Lifespan

Three non-destructive testing methods are developed for inspection of high strength, high conductivity wires which are used to wind ultra-high field pulsed magnets at the National MagLab. We expect the lifetime of future magnets to exceed those of past magnets due to these improvements in quality control.

Page 1 of 17