Research at the MagLab

Researchers at the MagLab are making discoveries today that will lead to the technologies of tomorrow. Whether a member of one of our robust in-house research groups or one of the nearly 1,400 outside scientists who do experiments here annually, MagLab researchers understand how high magnetic fields lead to making big discoveries.

Seeking the most powerful magnetic fields on Earth, scientists and engineers from across the world come to the MagLab to explore promising new materials, solve energy challenges and grow our understanding of living things. This kind of research has played a critical role in developing new technologies used every day – from electric lights and computers to motors, plastics, high-speed trains and MRI. Find out more by exploring our research initiatives, learning about our interdisciplinary research, or digging deeper into the hundreds of publications generated annually by MagLab researchers.

 

Research Initiatives

graphene

MATERIALS

Scientists use our magnets to explore semiconductors, superconductors, newly-grown crystals, buckyballs and materials from the natural world — research that reveals the secret workings of materials and empowers us to develop new technologies.

Read more …

petroleum

ENERGY

Scientists here are working to optimize petroleum refining, advance potential bio-fuels such as pine needles and algae, and fundamentally change the way we store and deliver energy by developing better batteries.

Read more …

brain

LIFE

With the world’s strongest MRI magnet, scientists here study everything from living animals to individual cells, from proteins to disease-fighting molecules found in plants and animals — work that could improve treatment of AIDS, cancer, Alzheimer’s and other diseases.

Read more …

 

Latest Science Highlight


  • Nuclear Spin Patterning Controls Electron Spin Coherence
    31 January 2020
    Nuclear Spin Patterning Controls Electron Spin Coherence

    Electron spin resonance work shows how transition metal can retain quantum information, important work on the path to next-generation quantum technologies.

  • Brain Waste Pathway Found
    23 January 2020
    Brain Waste Pathway Found

    Little is known about the path of metabolic waste clearance from the brain. Here, high-field magnetic resonance images a possible pathway for metabolic waste removal from the brain and suggests that waste clearance may be one reason why we sleep.

  • Nematic Phase Weakens Superconductivity
    23 January 2020
    Nematic Phase Weakens Superconductivity

    A nematic phase is where the molecular/atomic dynamics show elements of both liquids and solids, like in liquid crystal displays on digital watches or calculators. Using high magnetic fields and high pressure, researchers probed the electronic states of an iron-based superconductor and found that its nematic state weakened superconductivity.

See all Science Highlights

Featured Publications


Nuclear Spin Patterning Controls Electron Spin Coherence , C.E. Jackson, et al., , Chem. Sci., 10 (36), 8447-8454 (2019) See Science Highlight or Read online 

Influence of a nematic phase on high-temperature superconductivity , P. Reiss, et al., Nature Physics, 28, Oct (2019) See Science Highlight or Read online 

High Magnetic Field MRI Evidences Pathwaysfor Metabolic Brain Waste Clearance, K. N. Magdoom, et al., Nature Scientific Reports, 9, 11480 (2019) See Science Highlight or Read online 

Liquid State Dynamic Nuclear Polarization at High Magnetic Field, T. Dubroca, et al., Phys. Chem. Chem. Phys, 21 21200-21204 (2019) See Science Highlight or Read online 

Hafnium greatly improves Nb3Sn superconductor for high field magnets, S. Balachandran, et al., Superconductor Science and Technology,32, 044006 (2019) See Science Highlight or Read online 

Why does magnetic switching occur at such high magnetic fields in Sr3NiIrO6? , K.R. O'Neal, et al., njp Quantum Materials,4, 48 (2019) See Science Highlight or Read online 

Identification of abnormal hemoglobin from human blood , L. He, et al., Clinical Chemistry,65 (8), 986-994 (2019) See Science Highlight or Read online 

Topological structural defects in the spin liquid candidate TbInO3 , J.W. Kim, et al., Phys. Rev. X, 9, 031005 (2019) See Science Highlight or Read online 

Luttinger liquid behavior of helium-three in nanotubes , J. Adams, et al., J. Low Temp. Phys., 196 (1-2), 308-313 (2019) See Science Highlight or Read online 

Ultra-high magnetic fields provide new insights into bone-like materials, C. Bonhomme, et al., Chemical Communications, 54 (69), 9591-9594 (2018) See Science Highlight or Read online 

Last modified on 3 February 2020