Research at the MagLab

Researchers at the MagLab are making discoveries today that will lead to the technologies of tomorrow. Whether a member of one of our robust in-house research groups or one of the nearly 1,400 outside scientists who do experiments here annually, MagLab researchers understand how high magnetic fields lead to making big discoveries.

Seeking the most powerful magnetic fields on Earth, scientists and engineers from across the world come to the MagLab to explore promising new materials, solve energy challenges and grow our understanding of living things. This kind of research has played a critical role in developing new technologies used every day – from electric lights and computers to motors, plastics, high-speed trains and MRI. Find out more by exploring our research initiatives, learning about our interdisciplinary research, or digging deeper into the hundreds of publications generated annually by MagLab researchers.

 

Research Initiatives

graphene

MATERIALS

Scientists use our magnets to explore semiconductors, superconductors, newly-grown crystals, buckyballs and materials from the natural world — research that reveals the secret workings of materials and empowers us to develop new technologies.

Read more …

petroleum

ENERGY

Scientists here are working to optimize petroleum refining, advance potential bio-fuels such as pine needles and algae, and fundamentally change the way we store and deliver energy by developing better batteries.

Read more …

brain

LIFE

With the world’s strongest MRI magnet, scientists here study everything from living animals to individual cells, from proteins to disease-fighting molecules found in plants and animals — work that could improve treatment of AIDS, cancer, Alzheimer’s and other diseases.

Read more …

 

Latest Science Highlight


  • Deuterium Magnetic Resonance Can Detect Cancer Metabolism
    1 September 2020
    Deuterium Magnetic Resonance Can Detect Cancer Metabolism

    Magnetic resonance of cancer cell metabolism is a novel technique to discern between cancerous and normal liver cells, providing a promising approach for cancer stage progression imaging without the harmful exposure of radiation.

  • Hidden Magnetism Revealed in a Cuprate Superconductor
    1 September 2020
    Hidden Magnetism Revealed in a Cuprate Superconductor

    This research clarifies fundamental relationships between magnetism, superconductivity and the nature of the enigmatic “pseudogap state" in cuprate superconductors. The discovery provides an additional puzzle piece in the theoretical understanding of high-temperature superconductors - a key towards improving and utilizing these materials for technological applications.

  • Smart Non-Linear Transport Technique Expands the Frontier of Superconductor Research
    28 July 2020
    Smart Non-Linear Transport Technique Expands the Frontier of Superconductor Research

    Superconductors conduct large amounts of electricity without losses. They are also used to create very large magnetic fields, for example in MRI machines, to study materials and medicine. Here, researchers developed a fast, new "smart" technique to measure how much current a superconductor can carry using very high pulsed magnetic fields.

See all Science Highlights

Featured Publications


Deuterium Magnetic Resonance Can Detect Cancer Metabolism by Measuring the Formation of Deuterated Water, R. Mahar, Nature Scientific Reports, 10 (1), 8885 (2020) See Science Highlight or Read online 

High magnetic fields reveal hidden magnetism in a cuprate superconductor, M. Frachet, Nature Physics, 16, 1745-2481 (2020) See Science Highlight or Read online 

Smart Non-Linear Transport Technique Expands the Frontier of Superconductor Research, M. Leroux., Physical Review Applied, 11, 054005 (2019) See Science Highlight or Read online 

Inducing Magnetic Ring Currents in Non-Magnetic Aromatic Molecules: A Finding From the 25 T Split-Florida Helix , B. Kudisch, et al., Proceedings of the National Academies of Science, 117 (21), 11289-11298 (2020) See Science Highlight or Read online 

Molecular magnetic building blocks , J.-L. Liu, et al., Angew. Chem., February (2020) See Science Highlight or Read online 

Exploring Topological Semimetals in High Magnetic Fields , J. Liu, et al., Phys. Rev. B, 100, 195123 (2019) See Science Highlight or Read online 

MRI detects brain responses to Alzheimer’s disease plaque deposits and inflammation, L.M. Colon-Perez, et al., NeuroImage, 202, 116138 (2019) See Science Highlight or Read online 

Analytical tool for in vivo triple quantum MR signals, V.D. Schepkin Zeitschrift fur Medizinische Physik, 29 (4), 326-336 (2019) See Science Highlight or Read online 

Nuclear Spin Patterning Controls Electron Spin Coherence , C.E. Jackson, et al., , Chem. Sci., 10 (36), 8447-8454 (2019) See Science Highlight or Read online 

Influence of a nematic phase on high-temperature superconductivity , P. Reiss, et al., Nature Physics, 28, Oct (2019) See Science Highlight or Read online 

High Magnetic Field MRI Evidences Pathwaysfor Metabolic Brain Waste Clearance, K. N. Magdoom, et al., Nature Scientific Reports, 9, 11480 (2019) See Science Highlight or Read online 

Liquid State Dynamic Nuclear Polarization at High Magnetic Field, T. Dubroca, et al., Phys. Chem. Chem. Phys, 21 21200-21204 (2019) See Science Highlight or Read online 

Last modified on 1 September 2020