MagLab physicist Oskar Vafek’s latest groundbreaking work on superconductivity.

Scientists of the NHMFL-PFF have employed Resonant Ultrasound Spectroscopy to reveal a thermodynamic signature of the “Pseudo-Gap” within and beyond the superconducting phase boundary of YBCO. This experiment provides thermodynamic evidence that the pseudo gap is connected to the superconducting ground state in the cuprate materials.

They don't call it super for nothing. Once you get a superconductor going, it'll keep on ticking like the Energizer Bunny, only a lot longer. The catch is, it needs to be kept colder than Pluto.

Research on La2-xSrxCuO4 provides a new perspective on the mechanism for the superconductor-insulator transition in cuprates, one of the key questions in condensed matter physics.

A superconducting ground state has been observed at T < 3.8 K in copper-doped Bi2Se3 single crystals. Topological superconductivity is predicted in this material, assuming the superconducting electrons follow the linear energy-momentum dispersion (Dirac-like) seen in graphene and other materials of current interest. However, this presumption had not yet been confirmed by quantum oscillation measurements.

Page 5 of 5