One of the best tools for testing new materials for the next generation of research magnets is a MagLab magnet.

Two researchers play with nanostructures in a fun, fertile physics playground: the space between two things.

Using magnetic fields of over 90 T, the effective mass in the high-Tc superconductor YBa2Cu3O6+x was shown to be strongly enhanced as the material is doped toward optimal Tc.

The work by Dagan et. al. explores the emergence and coexistence of superconductivity and magnetism at the interface between insulating, non-magnetic LaAlO3 and SrTiO3 nanowires at low temperatures. The effect of the antiparallel magnetic order on the resistance of the 50 nm wide patterned wires follows the form of giant magnetoresistance (GMR) at low applied magnetic fields.

Are electrons stronger in pairs? MagLab physicists released new research published in Nature Communications that could help answer a looming question about the strength of Cooper pairs in high temperature superconducting materials.

A team of researchers from Université de Sherbrooke, Laboratoire National des Champs Magnétiques Intenses (LNCMI), University of British Columbia, Canadian Institute for Advanced Research and the National High Magnetic Field Laboratory discovered a previously unobserved portion of the Fermi surface in underdoped YBCO. This discovery provides further evidence to support the picture of the Fermi surface being reconstructed as a result of charge density wave order developing in underdoped YBCO prior to the material entering the superconducting state at lower temperatures.

High magnetic fields reveal the electronic interactions underlying high-temperature superconductivity in the iron pnictides. This research unifies the superconducting phase diagram of the pnictides with those of other quantum critical, high-temperature superconductors, such at the cuprates.

Comprehensive angle-resolved quantum oscillation measurements on YBa2Cu3O6+x in magnetic fields approaching 100 tesla are used to address longstanding problem of the normal state electronic of underdoped high temperature superconducting cuprates. The symmetry of the Fermi surface points uniquely to its reconstruction by biaxial ordering of the charge and bond degrees of freedom.

Scientists working at the MagLab have made a breakthrough in identifying the state from which high-Tc superconductivity emerges. Their results are in the June 19th issue of the journal Nature.

A pioneering study on superconductivity by a MagLab physicist and her collaborators has been published in Nature Physics. It unveils results that shatter long-held beliefs about the effects of magnets on superconductors.

Page 4 of 5