The compact coil could lead to a new generation of magnets for biomedical research, nuclear fusion reactors and many applications in between.

With funding from the National Science Foundation, scientists and engineers will determine the best way to build a new class of record-breaking instruments.

Recent measurements of superconducting tapes in the MagLab's 45-tesla hybrid magnet shows that the power function dependence of current on magnetic field remains valid up to 45T in liquid helium, while for magnetic field in the plane of the tape conductor, almost no magnetic field dependence is observed. Thus design of ultra-high-field magnets capable of reaching 50T and higher is feasible using the latest high-critical current density REBCO tape.

Made with high-temperature superconductors, the National MagLab's newest instrument shatters a world record and opens new frontiers in science.

MagLab-industry partnership ups the critical current density of this high-temperature superconductor by a third.

The DOE effort foresees a slew of health, environmental and safety applications.

At the National MagLab and other labs across the globe, the race to discover ever-warmer superconductors is heating up. Find out what these materials are, what they’re good for and why this field is red hot.

The new technique for connecting Bi-2212 round wires is an important step in building better, stronger superconducting magnets.

Game-changing technology may hold the key to ever-stronger magnets needed by scientists.

Scientists have discovered a way to significantly improve the performance of a decades-old superconductor, promising future applications for particle accelerators and research magnets.

Page 1 of 4