Using a novel method of winding the magnet coil that dispensed with the traditional insulation, the MagLab reached another world record and laid the foundation for more to come.

No insulation? No problem! In fact, by challenging the conventions of magnet making, MagLab engineers created a first-of-its-kind magnet that has only just begun to make records.

This week at the lab, engineers are winding a coil for a new, hybrid magnet system that will match the field strength of our own world-record magnet.

Two teams from two magnet labs located on two continents have joined forces on this project.

The High Field Magnet Lab (HFML), located in Nijmegen, the Netherlands, is building a continuous-field magnet designed to generate a field of 45 tesla, which will tie the record now held by the MagLab’s 45 tesla hybrid magnet. The National MagLab is lending its expertise to the effort by building the superconducting portion of the magnet; the HFML is building the resistive portion.

In the end, five spools of cables containing a total of 2 km of superconducting wire will be joined and wound to form a 5-ton coil. The winding process alone requires several months. “Electrically you have to continue that path from one length of conductor to the next,” said MagLab engineer Iain Dixon, who is heading up the project. “There’s a lot of care and a lot of checks that go on to make sure that the bends are in the right place and the cuts are in the right place."

The inter-lab collaboration has meant a lot of back and forth for both teams. Andries den Ouden, head of superconducting magnet technology at Nijmegen, was in Tallahassee recently.

"During the project operation, there are no walls between the two labs," said den Ouden. "There's an open exchange of information … I think that's one of the key benefits."

The HMFL has also done work for the MagLab, including testing the current leads on the series connected hybrid magnet now nearing completion.


Text by Kristen Coyne / Photo by Stephen Bilenky.

A new type of superconducting cable was successfully tested at high field at the MagLab, opening the door for the next generation of accelerator magnets operating at 20 teslas (T) and above.

New calculations that reveal the workings of a new type of high-field research magnet will aid in future magnet designs.

This week at the lab started for Safety Director Kyle Orth the same way it does every Monday: a powwow with the engineers and technicians building the lab's 36-tesla series connected hybrid magnet.

"Every Monday morning we go through the work that's going be done during the week, so we can identify the hazards that would be associated with that work and what needs to be done to mitigate those hazards."

This week that work includes removing some of the 5,000-lb. iron scaffolding used during the construction of the system that is no longer needed. Because this work involves clambering 20 feet above a concrete floor, workers must wear fall protection, hard hats and safety glasses. In addition, workers who will be inside the bore of the magnet will take precautions associated with being in a confined space, including carrying a multi-gas meter that sounds an alarm if the oxygen level dips too low.

The process is called integrated safety management, or ISM. Prior to any work that is potentially hazardous, MagLab employees review the situation and make plans for ensuring the job is done safely. Regular lab-wide meetings and posters hung throughout the facility also contribute to building a culture of safety at the lab.

Orth and other members of the safety department guide MagLab staff through ISM reviews about a dozen times a week, and groups like the SCH team start every day with a safety meeting. The team will continue those daily reviews until the new magnet, expected to break the record for field homogeneity for a high-field magnet, is completed early next year.

"It's the ISM process at the grassroots level, where it's actually being implemented," Orth said.


Video by Stephen Bilenky / Text by Kristen Coyne

Homogeneous magnets make data clearer for scientists. The MagLab has some of the most homogeneous magnets in the world.

Reduced-size prototype coils for the 32 T all-superconducting magnet have been successfully tested. The results include the generation of 27 T, which is a record for superconducting magnets.

We celebrate one of our flagship magnets and its decade of service to science.

Ten years ago the 900 Ultra-Wide Bore magnet became available to an international user community for Nuclear Magnetic Resonance spectroscopy and Magnetic Resonance Imaging at the National High Magnetic Field Lab. Since then 69 publications have been published from this instrument spanning many disciplines and the number of publications per year continues to increase with 26 in just the past 18 months demonstrating that state of the art data continues to be collected on this superb magnet.

Page 4 of 7