Pulsed magnets are designed to operate near their structural limits to be able to generate extremely high magnetic fields. The coils have a limited life expectancy and thus need to be replaced on occasion. Fabrication of these large coils are now being done at the MagLab where advanced nondestructive examinations can be performed. Because of more rigorous quality controls and improvements in high-strength conductors and reinforcement materials, the lifetime of these coils can be extended.

Scientists have a blast developing a technique for studying electrons in ultra-high magnetic fields.

Several materials are in the running to build the next generation of superconducting magnets. Which will emerge the victor?

A technique called dynamic nuclear polarization is hitting its stride, using electrons to shine a light on complex molecules.

With funding from the National Science Foundation, scientists and engineers will determine the best way to build a new class of record-breaking instruments.

MagLab experts fine-tuned a furnace for pressure-cooking a novel superconducting magnet. Now they're about to build its big brother.

"GAP" award will help further breakthrough treatment system for next-generation superconducting magnets.

When fully installed, the new instrument will be one of the two most powerful magnets on the planet.

MagLab scientists and engineers have developed a special coating on Bi-2212 superconducting wire for electrical insulation in superconducting magnets that will enable the wire to be used in ultra-high field nuclear magnetic resonance magnets.

A magnet-powered synchrotron at the first major international research center in the Middle East aims to draw scientists into cross-cultural collaborations.

Page 1 of 7