In the Netherlands, researchers double down on new discoveries by boosting the power of high-field magnets with lasers.

Two MagLab teams tried marrying vastly different technologies to build a new type of magnet: the Series Connected Hybrid. Decades later, has the oddball pairing panned out?

Pulsed magnets are designed to operate near their structural limits to be able to generate extremely high magnetic fields. The coils have a limited life expectancy and thus need to be replaced on occasion. Fabrication of these large coils are now being done at the MagLab where advanced nondestructive examinations can be performed. Because of more rigorous quality controls and improvements in high-strength conductors and reinforcement materials, the lifetime of these coils can be extended.

Scientists have a blast developing a technique for studying electrons in ultra-high magnetic fields.

Several materials are in the running to build the next generation of superconducting magnets. Which will emerge the victor?

A technique called dynamic nuclear polarization is hitting its stride, using electrons to shine a light on complex molecules.

With funding from the National Science Foundation, scientists and engineers will determine the best way to build a new class of record-breaking instruments.

MagLab experts fine-tuned a furnace for pressure-cooking a novel superconducting magnet. Now they're about to build its big brother.

"GAP" award will help further breakthrough treatment system for next-generation superconducting magnets.

When fully installed, the new instrument will be one of the two most powerful magnets on the planet.

Page 1 of 7