Protein oxidative damage is a common occurrence in a number of diseases, including cancer, neurodegenerative, and cardiovascular disease. Yet, little is known about its contribution to these illnesses. We developed a new technique, utilizing an infrared laser in combination with a mass spectrometer, to selectively identify sites of oxidation in complex protein mixtures. This sensitive and rapid platform may outperform current techniques and thus shed light on the involvement of oxidative damage in each of these diseases.

This high-field EPR study of the H-Mn2+ content in the bacterium Deinococcus Radiodurans provides the strongest known biological indicator of cellular ionizing radiation resistance between and within the three domains of the tree of life, with potential applications including optimization of radiotherapy.

Dylan Murray wants to sabotage processes that can lead to neurodegenerative disease.

Researchers will develop new treatments to prevent deadly condition.

Research sheds new light on the formation of harmful structures that can lead to neurodegenerative diseases.

From nanorockets to nanocages, good science can come in tiny packages — all with the aim of solving really big problems.

A lot of the research conducted in powerful magnets ends up having a powerful effect on our day-to-day lives.

We open a can of worms to learn how pheromones  help invertebrates regulate population.

MagLab-affiliated researcher and FAMU-FSU College of Engineering faculty member Subramanian Ramakrishnan has received a prestigious Centers of Research Excellence in Science and Technology (CREST) grant from the National Science Foundation.

The five-year, $4.9 million grant will establish the Center for Complex Materials Design for Multidimensional Additive Processing (known as the CoManD Center). This new center will tap into expertise of researchers at Florida A&M Univeristy (FAMU), the College of Engineering and the National MagLab to advance manufacturing at the micrometer scale for biological, aerospace and energy applications.

In association with the National MagLab, Ramakrishnan will direct the center’s first project, which focuses on developing nanostructured lightweight materials for shielding and sensing applications. Industrial Engineering Professor Tarik Dickens will direct the center’s second subproject, which will consist of developing materials/devices for energy applications in association with the High Performance Materials Institute. Pharmaceutics Professor Mandip Singh Sachdeva will direct the center’s third subproject, which includes developing materials/devices for biological applications such as a 3D printed tumor biosystem on a chip.

"The uniqueness of this award is the synergy between universities, national labs and defense labs," Ramakrishnan explained.

In addition to research, the grant will help support undergraduate courses based on the fundamentals of self-assembly, nanoparticle synthesis and characterization, additive manufacturing, nanomaterials in biology, and nanoparticles in medicine. The courses will be developed and offered to FAMU students. Also, a laboratory course in materials will be offered to graduate and undergraduate students involved in materials research. The center will work to produce 15 doctorate students, directly impact 40 undergraduates, and influence 100 graduate students and 300 additional undergraduates through collaborations and coursework.

Story by Kristin Roberts.

New technique could lead to precise, personalized cancer diagnosis and monitoring.

Page 3 of 4