13 October 2009

Magnet Lab receives funds to investigate promising superconductor

Contact: This email address is being protected from spambots. You need JavaScript enabled to view it.

TALLAHASSEE, Fla. — The Applied Superconductivity Center at the National High Magnetic Field Laboratory has received $1.2 million in funding from the U.S. Department of Energy (DOE) to understand and enhance a new form of superconducting material that could be used to build more-powerful magnets used in a wide range of scientific research. The grant is part of a larger $4 million award over two years to a collaboration – the Very High Field Superconducting Magnet Collaboration – for which Larbalestier and Alvin Tollestrup at Fermilab are the principal investigators.

The DOE funds will enable Larbalestier, Eric Hellstrom, Jianyi Jiang, Ulf Trociewitz and others at the Magnet Lab to investigate the complex copper oxide superconductor with the unwieldy name of bismuth strontium calcium copper oxide, or BSCCO-2212.

This material is unique among all of the so-called high temperature superconductors because it can be made into round wires, a product form that is much more flexible for making magnets. The goal of the new Magnet Lab research is to thoroughly understand BSCCO-2212's performance limits and to construct superconducting research magnets far more powerful than those currently made with niobium-based materials. (Bismuth and niobium are metals that exhibit superconducting properties when exposed to extremely low temperatures.)

"This material is very promising, but it's very complex and not very strong," said David C. Larbalestier, the Magnet Lab's chief materials scientist and director of the Applied Superconductivity Center. "DOE has entrusted us with the funds to make a broad U.S. collaboration that directly addresses both the fundamental processing and grain boundary science of these fascinating materials and their application to new generations of magnets, both at the Magnet Lab and in the DOE high-energy-physics laboratories."

The other institutions participating in the collaboration are Brookhaven National Laboratory, Fermilab, Lawrence Berkeley National Laboratory, Los Alamos National Laboratory, the National Institute of Standards and Technology, and Texas A&M University.

Superconductivity is a phenomenon observed in several materials. When cooled to extremely low temperatures, superconductors have no electrical resistance, meaning electrons can travel through them freely. Because of this, superconducting materials can carry large amounts of electrical current for long periods of time without losing energy as heat.

Traditional, niobium-based superconducting materials cannot generate magnetic fields above about 24 tesla, but in October of 2008, Mag Lab engineers constructed a BSCCO-2212 test coil that achieved 32 tesla. (Tesla is the scientific unit of measure of magnetic field strength; 32 tesla is more than 3,000 times stronger than a refrigerator magnet.)

Developing higher field superconducting magnets would transform high field research significantly reducing the costs to operate the magnets. Non-superconducting electromagnets, called resistive magnets, consume massive amounts of electricity. At the Mag Lab, the average cost to run a resistive magnet is $774 per hour – 40 times more than a 20-tesla superconducting magnet, because once a superconducting magnet is brought to full field, it can operate perpetually. That would allow scientists to remain at high fields for hours and even days, since operating costs would be dramatically lower than they are now.

"This collaboration provides major DOE support toward a central goal of the National Science Foundation," said Larbalestier. "It's a great example of multiple stakeholders working together to push high field magnet development to the next level."