Los Alamos explores experimental path to potential 'next theory of superconductivity'

A novel approach combining pulsed field optical FBG strain measurements in world-class magnets, with Density Functional based calculations to pinpoint the peculiar nanopantograph mechanism behind the magnetoelastic coupling, allows researchers to conclude that magnetic field and pressure are alternative ways to tune the quantum properties of the Shastry-Sutherland compound SrCu2(BO3)2

Scientists using MagLab magnets bolster theory that quantum fluctuations drive strange electronic phenomena.

High magnetic fields reveal the electronic interactions underlying high-temperature superconductivity in the iron pnictides. This research unifies the superconducting phase diagram of the pnictides with those of other quantum critical, high-temperature superconductors, such at the cuprates.

The Pulsed Field Facility's 240-ton generator is so massive and so powerful that it can't sit on the ground.

Comprehensive angle-resolved quantum oscillation measurements on YBa2Cu3O6+x in magnetic fields approaching 100 tesla are used to address longstanding problem of the normal state electronic of underdoped high temperature superconducting cuprates. The symmetry of the Fermi surface points uniquely to its reconstruction by biaxial ordering of the charge and bond degrees of freedom.

Scientists working at the MagLab have made a breakthrough in identifying the state from which high-Tc superconductivity emerges. Their results are in the June 19th issue of the journal Nature.

The high-magnetic field phase diagram to 65 Tesla of the MV2O4 family (M = Cd, Mg) reveals new multiferroic phase transitions that point to an unusual interplay between spin-orbit interactions and frustrated magnetism.

Scientists of the NHMFL-PFF have employed Resonant Ultrasound Spectroscopy to reveal a thermodynamic signature of the “Pseudo-Gap” within and beyond the superconducting phase boundary of YBCO. This experiment provides thermodynamic evidence that the pseudo gap is connected to the superconducting ground state in the cuprate materials.

Page 3 of 4