Albert Migliori wins the top instrumentation prize of the American Physical Society.

Ni3TeO6 provides a new approach to coupling magnetism to ferroelectricity with a record large response. We measured this material's magnetic and electric properties across an extended range of temperature and magnetic field and compared with theoretical calculations to extract a model that describes the underlying reason for a large magnetoelectric coupling. High magnetic fields were key to establishing the magnetic Hamiltonian. This work is motivating the discovery of further 3d-4d oxide materials with large magnetoelectric couplings.

Researchers working at the National MagLab have identified a material that behaves as a conductor and an insulator at the same time, challenging current understanding of how materials behave, and pointing to a new type of insulating state.

Using magnetic fields of over 90 T, the effective mass in the high-Tc superconductor YBa2Cu3O6+x was shown to be strongly enhanced as the material is doped toward optimal Tc.

Los Alamos explores experimental path to potential 'next theory of superconductivity'

A novel approach combining pulsed field optical FBG strain measurements in world-class magnets, with Density Functional based calculations to pinpoint the peculiar nanopantograph mechanism behind the magnetoelastic coupling, allows researchers to conclude that magnetic field and pressure are alternative ways to tune the quantum properties of the Shastry-Sutherland compound SrCu2(BO3)2

Scientists using MagLab magnets bolster theory that quantum fluctuations drive strange electronic phenomena.

High magnetic fields reveal the electronic interactions underlying high-temperature superconductivity in the iron pnictides. This research unifies the superconducting phase diagram of the pnictides with those of other quantum critical, high-temperature superconductors, such at the cuprates.

The Pulsed Field Facility's 240-ton generator is so massive and so powerful that it can't sit on the ground.

Comprehensive angle-resolved quantum oscillation measurements on YBa2Cu3O6+x in magnetic fields approaching 100 tesla are used to address longstanding problem of the normal state electronic of underdoped high temperature superconducting cuprates. The symmetry of the Fermi surface points uniquely to its reconstruction by biaxial ordering of the charge and bond degrees of freedom.

Page 3 of 4