The Pulsed Field Facility's 240-ton generator is so massive and so powerful that it can't sit on the ground.

A novel approach combining pulsed field optical FBG strain measurements in world-class magnets, with Density Functional based calculations to pinpoint the peculiar nanopantograph mechanism behind the magnetoelastic coupling, allows researchers to conclude that magnetic field and pressure are alternative ways to tune the quantum properties of the Shastry-Sutherland compound SrCu2(BO3)2

Scientists of the NHMFL-PFF have employed Resonant Ultrasound Spectroscopy to reveal a thermodynamic signature of the “Pseudo-Gap” within and beyond the superconducting phase boundary of YBCO. This experiment provides thermodynamic evidence that the pseudo gap is connected to the superconducting ground state in the cuprate materials.

Ni3TeO6 provides a new approach to coupling magnetism to ferroelectricity with a record large response. We measured this material's magnetic and electric properties across an extended range of temperature and magnetic field and compared with theoretical calculations to extract a model that describes the underlying reason for a large magnetoelectric coupling. High magnetic fields were key to establishing the magnetic Hamiltonian. This work is motivating the discovery of further 3d-4d oxide materials with large magnetoelectric couplings.

The finding in fullerides opens a new way of exploring the role electron interactions play in high-temperature superconductivity

This week at the lab, we're preparing a home for a new magnet that will give more scientists access to some of the highest magnetic fields in the world.

The new Duplex Magnet, slated for completion this fall at the Pulsed Field Facility in Los Alamos, New Mexico, will reach fields up to 80 teslas, although it will most often run at 75 teslas to extend its lifetime. Like the other instruments available at the Pulsed Field Facility, the Duplex will generate these incredibly high fields for just a fraction of a second — still ample time for physicists to get valuable data.

But unlike the facility’s other magnets, the Duplex features two coils that will be powered by separate circuits and capacitors. This design helps operators better manage the temperature and stress the instrument is subjected to and allows for flexibility in future improvements.

The Duplex will be located near the facility’s primary workhorse, the 65 Tesla Multi-Shot Magnet. Featuring the same 15-millimeter bore for inserting experiments, it will enable more scientists to do cutting-edge experiments in these extreme fields.


Photo by Stephen Bilenky. Text by Kristen Coyne.

Scientists using MagLab magnets bolster theory that quantum fluctuations drive strange electronic phenomena.

The high-magnetic field phase diagram to 65 Tesla of the MV2O4 family (M = Cd, Mg) reveals new multiferroic phase transitions that point to an unusual interplay between spin-orbit interactions and frustrated magnetism.

Albert Migliori wins the top instrumentation prize of the American Physical Society.

Scientists working at the MagLab have made a breakthrough in identifying the state from which high-Tc superconductivity emerges. Their results are in the June 19th issue of the journal Nature.

Page 1 of 4