Physics does not yet know why copper-based superconductors (cuprates) conduct electrical current without dissipation at unprecedentedly high temperatures. Ultra high magnetic fields are used here to suppress superconductivity in a cuprate near absolute zero temperature, revealing an underlying transition to an electronic phase that might be the cause of the superconductivity.

Three non-destructive testing methods are developed for inspection of high strength, high conductivity wires which are used to wind ultra-high field pulsed magnets at the National MagLab. We expect the lifetime of future magnets to exceed those of past magnets due to these improvements in quality control.

Marcelo Jaime recognized for his contributions to experimental physics in high magnetic fields.

Interactions between electrons underpin some of the most interesting – and useful -- effects in materials science and condensed-matter physics. This work demonstrates that, in the new family of so-called "monolayer semiconductors" that are only one atomic layer thick, electron-electron interactions can lead to the sudden and spontaneous formation of a magnetized state, analogous to the appearance of magnetism in conventional materials like iron.

Superconductors conduct large amounts of electricity without losses. They are also used to create very large magnetic fields, for example in MRI machines, to study materials and medicine. Here, researchers developed a fast, new "smart" technique to measure how much current a superconductor can carry using very high pulsed magnetic fields.

Researchers demonstrate a new record magnetoresistance in graphene by improving the contacting method, which helps improve our understanding of the material and can be useful in future sensors, compasses and other applications.

In a uranium-based compound once dismissed as boring, scientists watched superconductivity arise, perish, then return to life under the influence of high magnetic fields.

Using intense pulsed magnetic fields and measurements at low temperatures, MagLab users have found evidence of a long-sought “spin liquid” in terbium indium oxide (TbInO3)

The findings contribute to scientists' understanding of magnetic materials that could point the way to future applications.

Pulsed magnets are designed to operate near their structural limits to be able to generate extremely high magnetic fields. The coils have a limited life expectancy and thus need to be replaced on occasion. Fabrication of these large coils are now being done at the MagLab where advanced nondestructive examinations can be performed. Because of more rigorous quality controls and improvements in high-strength conductors and reinforcement materials, the lifetime of these coils can be extended.

Page 1 of 5