Scientists have long pursued the goal of superconductivity at room temperature. This work opens a route towards one day stabilizing superconductivity at room temperature, which could open tremendous technological opportunities.

Weyl metals such as tantalum arsenide (TaAs) are predicted to have novel properties arising from a chirality of their electron spins. Scientists induced an imbalance between the left- and right-handed spin states, resulting in a topologically protected current. This was the first time this phenomenon, known as the chiral anomaly, has been observed.

Scientists used high magnetic fields and low temperatures to study crystals of URu2–xFexSi2. Using these conditions, they explored an intriguing state of matter called the "hidden order phase" that exhibits emergent behavior. Emergent behavior occurs when the whole is greater than the sum of its parts, meaning the whole has exciting properties that its parts do not possess; it is an important concept in philosophy, the brain and theories of life. This data provide strict constraints on theories of emergent behavior.

Analogous to the unique spectral fingerprint of any atom or molecule, researchers have measured the spectrum of optical excitations in monolayer tungsten diselenide (WSe2), which is a member of a new family of ultrathin semiconductors that are just one atomic layer thick.

This MagLab user talks about meeting Leonardo da Vinci, making magnetic soup and the freedom of being a scientist.

Researchers discover that Sr1-yMn1-zSb2 (y,z < 0.1) is a so-called Weyl material that holds great promise for building devices that require far less power.

This finding sheds light on the role of quasiparticle mass enhancement near a quantum critical point in one of the leading families of high-temperature superconductors.

Discovery could help scientists better understand exotic behaviors of electrons.

The finding in fullerides opens a new way of exploring the role electron interactions play in high-temperature superconductivity

Scientists discovered how to tune the optical properties of atomically-thin semiconductors, which will aid the design of future microscopic light sensors.

Page 1 of 4