This week at the lab our new chief scientist is on the road, connecting the dots that are the National MagLab’s many instruments, techniques and experts.

Physicist Laura Greene, who was named the lab’s chief scientist last year, traveled from the lab’s Florida State University headquarters to the University of Florida in Gainesville, home to two of the lab’s seven user facilities: the High B/T Facility and the Advanced Magnetic Resonance Imaging and Spectroscopy facility (AMRIS). 

Greene (pictured above left with Tom Mareci and Joanna Long of AMRIS) will learn about the special capabilities the facilities offer, including dynamic nuclear polarization (DNP), a promising technique under development at AMRIS and at the MagLab’s Tallahassee-based Nuclear Magnetic Resonance Facility. More familiar to biologists and chemists, DNP may also be a powerful tool for condensed matter physicists, said Greene. President-elect of the American Physical Society, Greene says a big part of her MagLab job will be identifying and building these types of fertile, cross-disciplinary relationships.

When scientists learn from colleagues at a different facility or lab about the research they are working on it, "People are astounded and excited by it," said Greene. "But then they go back and they’re busy. So it’s going to be my job to help keep the flywheel going … to keep it as single MagLab, make sure we learn from each other."

Greene hopes the connections she is fostering will result both in more scientific publications authored by MagLab staff from multiple facilities as well as publications spawned by collaborations with other national labs and industry. Through her work with the Center for Emergent Superconductivity, Greene has close ties to both Brookhaven and Argonne national laboratories.


Photo by Elizabeth Webb / Text by Kristen Coyne

When molecules are forced to pass through narrow holes in membranes, they must move one-by-one in single file. When this “No Passing!” rule is in effect, researchers have recently made the surprising discovery that mixing two gases can lead to faster motion of some of the molecules through the narrow holes.

Looking for clues on climate change, a scientist digs up the dirt on peat from around the world.

In this paper, we obtained the first brain map of a complete fruit fly head at 10 micron isotropic resolution, the highest ever reported by MR for a complete head. Using two complementary imaging sequences revealed the superior power of DWI to dissect the brain architecture at close to cellular resolution.

13C NMR when used in metabolomics 1. Provides better peak list for database matching and spectral annotation, 2. Provides better group separation and loadings annotation when using multivariate statistical analysis, and 3. Prevents possible misidentification of metabolites.

A new non-Brownian model of anomalous translational diffusion in nervous tissue is introduced and applied to the brain. This model provides new fractional order parameters of diffusion, entropy, waiting time and jump length that represent unique markers of morphology in neural tissue.

Dr. Joanna Long has been appointed Associate Laboratory Director and co-Principal Investigator of the MagLab.

The MagLab’s AMRIS facility has recently implemented dissolution DNP technology. The system utilizes a 5 T magnet in which samples are cooled to 14,000 gain in SNR on dissolution and injection into our 4.7T MRI/S scanner.

This instrument is located at the MagLab's AMRIS Facility at the University of Florida in Gainesville.

Researchers using pulsed field gradient NMR at the AMRIS facility found clear evidence for molecular single file diffusion of xenon gas confined inside model nanotube systems.

Page 2 of 3