A novel approach combining pulsed field optical FBG strain measurements in world-class magnets, with Density Functional based calculations to pinpoint the peculiar nanopantograph mechanism behind the magnetoelastic coupling, allows researchers to conclude that magnetic field and pressure are alternative ways to tune the quantum properties of the Shastry-Sutherland compound SrCu2(BO3)2

High magnetic fields have been shown to induce strong electric polarizations in the doped organic quantum magnet, dichloro-tetrakis-thiourea, or DTN. The introduction of disorder in DTN leads to the formation of Bose glass states and the electric polarization is particularly enhanced at the transitions to the glass state.

Grain boundaries in BaFe2As2 (122), which is an iron-based superconductor, block current flow. This study, which was a collaboration with a group at Northwestern University, used a Local Electrode Atom Probe (LEAP), which is a relatively new experimental tool, to make a 3-D atom-by-atom reconstruction of a region of a 122 sample that included a grain boundary. The data showed that the chemical composition varied across the grain boundary and in that oxygen was present at the grain boundaries. These variations in composition may contribute to grain boundary's reduced current carrying capacity.

Square-planar high-spin Fe(II) molecular compounds are rare. Using an easily modifiable pincer-type ligand, the successful synthesis of the first compound of this type that breaks the FeO4 motif was achieved, and the first spectroscopic evidence that the geometry and spin state persist in solution was obtained.

Enabling the rational synthesis of molecular candidates for quantum information processing requires design principles that minimize electron spin decoherence. Two series of paramagnetic coordination complexes, [M(C2O4)3]3- (M = Ru, Cr, Fe) and [M(CN)6]3- (M = Fe, Ru, Os), were prepared and subsequently interrogated by pulsed electron paramagnetic resonance spectroscopy to assess quantitatively the influence of the magnitude of spin (S = 1/2, 3/2, 5/2) and spin–orbit coupling (ζ = 464, 880, 3100 cm–1) on decoherence. The results illustrate that the design of qubit candidates can be achieved with a wide range of paramagnetic ions and spin states while preserving a long-lived coherence.

Mn-Ga has been characterized as a candidate lower-cost material for substituting rare earth materials in permanent magnets.

The high-magnetic field phase diagram to 65 Tesla of the MV2O4 family (M = Cd, Mg) reveals new multiferroic phase transitions that point to an unusual interplay between spin-orbit interactions and frustrated magnetism.

Here we study the microstructural and transport properties of Co-Ba122 thin films in which secondary non-superconducting phases have been introduced during film growth in two different ways: first by using a Co-Ba122 target with a small amount of oxygen, second by alternating two different targets: a clean CoBa122 and an undoped Ba122 target.

A prototype high-temperature superconducting coil for the 32 T all-superconducting magnet was constructed with YBCO tape and successfully tested in the large-bore resistive magnet at the MagLab.

Page 4 of 4