ASC Science Highlights

27 March 2017

Better joints to connect wires of promising superconductor

The new technique for connecting Bi-2212 round wires is an important step in building better, stronger superconducting magnets.

24 August 2016

A better superconductor for Large Hadron Collider

Scientists have discovered a way to significantly improve the performance of a decades-old superconductor, promising future applications for particle accelerators and research magnets.

13 April 2016

Superconducting insert magnet generates new record field of 40.2 teslas

Using a novel method of winding the magnet coil that dispensed with the traditional insulation, the MagLab reached another world record and laid the foundation for more to come.

11 December 2015

Record current density in superconducting CORC® magnet cables at 20 teslas

A new type of superconducting cable was successfully tested at high field at the MagLab, opening the door for the next generation of accelerator magnets operating at 20 teslas (T) and above.

10 April 2015

Overpressure furnace for processing Bi-2212 high-field magnets

An overpressure furnace capable of developing high current density in significant-sized coils (up to 15 cm diameter and 50 cm long) has been brought into commission. The furnace is enabling reaction of solenoids made out of Bi-2212 destined for tests of NMR quality magnets at proton frequencies greater than 1 GHz.

15 December 2014

Evidence for extrinsic, impurity segregation at grain boundaries in high current-density K- and Co-doped BaFe2As2

Grain boundaries in BaFe2As2 (122), which is an iron-based superconductor, block current flow. This study, which was a collaboration with a group at Northwestern University, used a Local Electrode Atom Probe (LEAP), which is a relatively new experimental tool, to make a 3-D atom-by-atom reconstruction of a region of a 122 sample that included a grain boundary. The data showed that the chemical composition varied across the grain boundary and in that oxygen was present at the grain boundaries. These variations in composition may contribute to grain boundary's reduced current carrying capacity.

16 December 2013

Low Temperature High Field Continuous Measurement of YBCO

Scientists have developed a new way to test tape made of the promising high-temperature superconductor YBCO, a key step toward building stronger superconducting magnets.

30 September 2013

Magnets with High-Temperature Superconducting Round Wire

MagLab scientists developed a method to process high-temperature superconducting Bi-2122 round wire that significantly boosts its ability to carry large electrical currents and generate high magnetic fields.

15 August 2013

Oxypnictide SmFeAs(O,F) Superconductor: A Candidate for High-field Magnet Applications

Researchers find high critical current density in the recently discovered oxypnictide superconductor SmFeAs(O,F), raising hopes for potential electronics applications.

15 April 2013

Artificial and Self-assembled Vortex-pinning Centers in Superconducting Ba(Fe1-xCox)2As2 Thin Films

Here we study the microstructural and transport properties of Co-Ba122 thin films in which secondary non-superconducting phases have been introduced during film growth in two different ways: first by using a Co-Ba122 target with a small amount of oxygen, second by alternating two different targets: a clean CoBa122 and an undoped Ba122 target.

15 December 2012

Filament Fracture in ITER Conductor under Cyclic Lorentz Force Loading

First direct evidence that filament fracture accompanies degradation of superconducting cables designed for the International Thermonuclear Experimental Reactor (ITER). The tokomak fusion reactor, now under construction in France, is an international collaboration crucial to future energy generation from nuclear fusion.

15 August 2012

High Critical Current Density in Fine-grain (Ba0.6K0.4)Fe2As2

Ferro-pnictide superconductors attracted immediate attention for potential applications due to their high superconducting transition temperatures (Tc up to 56 K) and high upper critical magnetic fields (Hc2 over 100 T). Unfortunately, much as in cuprates, grain boundaries (GBs) were found to obstruct their current carrying capability. This posed a serious technological problem because wires for magnets cannot be single crystals and, thus, inevitably contain grain boundaries. This work shows that low-temperature synthesis of the compound (Ba0.6K0.4)Fe2As2 (Ba-122) in the form of polycrystalline wire achieves a current density three times that of state-of-the-art Nb3Sn wires.