The renowned and mysterious hidden-order (HO) phase in URu$_2$Si$_2$ is intimately related to the large-moment antiferromagnetic (LMAFM) phase that is induced under pressure or upon iron (Fe) substitution. MagLab users performed electrical resistivity measurements on single crystals of URu$_{2-x}$Fe$_x$Si$_2$ in magnetic fields of up to 45T (Hybrid Magnet) and 65T (Pulsed Magnets). Various phases including HO, LMAFM, HO* (reentrant HO phase), SDW (spin density wave), FL (ordinary Fermi-Liquid metallic phase, recovered at high field), and PM (paramagnetic phase at high temperature) were mapped, along with P1 (a possible new intermediate-field phase), to establish a three-dimensional (3D) field – composition - temperature (H, x, T) phase diagram for this complex material.

The 3D phase diagram establishes a “universal” relationship between the normalized transition temperature T/T_0 and the normalized critical magnetic field H/H_0 for the HO phase: the H/H_0 versus T/T_0 data in the lower figure collapses onto a single curve. This curve provides tight constraints on potential models for the order parameter of the HO phase.

Within a certain range of x values, $x \approx 0.17$, the HO phase reenters when magnetic fields suppress the LMAFM phase. This is similar to the behavior observed for pure URu$_2$Si$_2$ crystals within a certain range of pressures.

Facilities and instrumentation used: 65 Tesla capacitor-driven magnet at the MagLab’s Pulsed Field Facility, Los Alamos; 45 T Hybrid Magnet at the MagLab’ DC Magnet Facility, Florida State University;

Citation: S. Ran, I. Jeon, N. Pouse, A.J. Breindel, N. Kanchanavatee, K. Huang, A. Gallagher, K.-W. Chen, D. Graf, R.E. Baumbach, J. Singleton, and M.B. Maple, “Phase diagram of URu$_{2-x}$Fe$_x$Si$_2$ in high magnetic fields”, Proceedings of the National Academy of Sciences 114, 37, 9826 (2017). https://doi.org/10.1073/pnas.1710192114