The quantum spin-nematic state (SN) was theoretically predicted over 30 years ago, but has yet to be experimentally found in condensed matter systems, due to the complex nature of this exotic spin-state. Analogous to a type of order found in liquid crystals, this frustrated magnetic state, if real, is predicted to be an avenue for developing quantum information devices. However, scientists are presently limited by the small number of potential experimental observables for a SN state. Nuclear magnetic resonance (NMR) is currently the only feasible measurement technique that is sensitive to local, microscopic magnetism. It can be naturally combined with the high magnetic fields necessary to prove the SN state’s existence.

MagLab users performed NMR measurements on the material β-TeVO₄, a promising SN candidate, in both the 36T Series Connected Hybrid (SCH) magnet and, most recently, the world-record all-superconducting 32T magnet. The experiment is ongoing, but initial results on the 32T magnet are consistent with the 125Te spectral shifts measured in the SCH. *Future experiments will require long times at high fields to establish whether the purported SN state is real.*

These initial results indicate the game-changing nature of the new 32T HTS user magnet and its unique measurement capabilities.

Facilities and instrumentation used: DC Field Facility: SCM4 (The new 32 Tesla all superconducting magnet)