Measuring Fermi Surfaces in Extreme Magnetic Fields

David Graf

May 18, 2016
Starting point: carriers in a periodic potential

\[E(k, q) = \frac{\hbar^2 k^2}{2m} \]

Kinetic Energy

\[E(k, q) = \frac{\hbar^2 k^2}{2m} + V(q) \]

Kinetic + Periodic/ionic potential

\[E_F \]

(or Fermi level)
What is a Fermi surface?

The location in reciprocal space of long-lived electronic excitations that govern the electronic properties of metals at low temperatures.

“The” fundamental property of the metallic state.

“The pathways for carriers through a metal”
Geometry of the FS: determined by crystal structure and position of the Fermi level

\[\text{Nb}_2\text{Pd}_{0.81}\text{S}_5 \]

Wien2K
Electronic anisotropy and geometry of the Fermi surface

Na, bcc

Co, hcp

3-D

http://www.phys.ufl.edu/fermisurface/
Two-dimensional Fermi surfaces

$YBa_2Cu_3O_{7-\delta}$

$E(k)$

SrFe$_2$P$_2$

1)

2)

3)

4)

Quasi-one-dimensional Fermi surfaces

$$(\text{TMTSF})_{2}\text{PF}_6$$

$$\hbar \vec{v} = \vec{\nabla}_k E(k)$$
Lindhard Function and Peierls Instability

Response function of the \(\bar{\epsilon} \) gas:

\[
\rho^{\text{ind}}(\bar{q}) = \chi(\bar{q})\phi(\bar{q})
\]

\[
\chi(\bar{q}) \sim \frac{e^2}{\pi \hbar v_F} \ln \left| \frac{1 + q / 2k_F}{1 - q / 2k_F} \right|
\]

 Courtesy: L. Alcacer
(Per)$_2$Au(mnt)$_2$

Resistance (Ohms) vs Temperature (K)

Metal
CDW

T_{CDW}

Magnetic Field (T)

$T_{CDW}(B=0)$
$T_{CDW}(B∥b-axis)$
$T_{CDW}(B⊥b-axis)$
Landau Quantization in a magnetic field

\[\mathbf{B} = \nabla \times \mathbf{A}; \text{where } \hat{\mathbf{A}} = \begin{pmatrix} 0 \\ B_x \\ 0 \end{pmatrix} \text{ if } B = B_0 \hat{z} \]

\[\hat{H} = \frac{1}{2m} \left(\hat{\mathbf{p}} - e\hat{\mathbf{A}} \right)^2 = \frac{\hbar^2 k_x^2}{2m} + \frac{(\hbar k_y + eBx)^2}{2m} + \frac{\hbar^2 k_z^2}{2m} \]

\[\hat{H} = \frac{1}{2m} \left[\hbar^2 k_x^2 + m^2 \omega_c^2 (x - x_0)^2 \right] + \frac{\hbar^2 k_z^2}{2m} \]

where \(\omega_c = \frac{eB}{mc} \) and \(x_0 = \frac{\hbar k_y}{m\omega_c} \);

\[E_{n,k_z} = \hbar \omega_c \left(n + \frac{1}{2} \right) + \frac{\hbar^2 k_z^2}{2m} \]

Introduction to Q.M. by Griffiths

Clean samples and low temperatures!
Electronic orbits in a magnetic field: the Onsager relation

Bohr – Sommerfeld quantization rule:

\[\oint \vec{p} \cdot d\vec{r} = \left(n + \frac{1}{2} \right) \hbar \]

where \(\vec{p} = \hbar \vec{k} - \frac{e}{c} \vec{A} \) and \(\hbar \vec{k} = \frac{e}{c} \vec{r} \times \vec{B} \);

\[\Rightarrow \frac{e}{c} \left(\oint (\vec{r} \times \vec{B}) \cdot d\vec{r} + \oint \vec{A} \cdot d\vec{r} \right) = \left(n + \frac{1}{2} \right) \hbar \]

\[\Rightarrow \frac{e}{c} \left(-B \oint \vec{r} \times d\vec{r} + \int \nabla \times \vec{A} \cdot ds \right) = \left(n + \frac{1}{2} \right) \hbar \]

\[\Rightarrow \Phi_n = B.S_r = \left(n + \frac{1}{2} \right) \phi_0 \]

where \(\phi_0 = \frac{\hbar c}{2e} \) is the quantum of flux (CGS units)

Introduction to Solid State Physics by Charles Kittel
Typical organic conductor: \((\text{Donor})_2\text{Anion}\)

\[
\tau-(P-(S,S)-\text{DMEDT-TTF})_2(AuBr_2)_{1+y}
\]

Increase the magnetic field and the Landau levels (red) begin to shift past the Fermi surface (blue).

![Normalized resistance](image1)

![FFT](image2)

FFT
Frequency ~ 494 T
What if you rotate the sample?

$$S_0 \propto \frac{1}{\cos(\theta)}$$

where \(\theta\) is the angle between the field and sample axis.

$$\text{BaFe}_2\text{As}_2$$

Issues with the (fast) Fourier transform...

\[R (\text{m}\Omega) \]

\[H (\text{T}) \]

\(T = 0.6 \text{ K} \)

\(\text{Na}_{0.84}\text{CoO}_2 \)

\[(1/\rho - 1/\rho_b)\rho_b \]

\[H^{-1}(\text{T}^{-1}) \]

\[T = 0.6 \text{ K} \]
\[1.5 \text{ K} \]
\[2.5 \text{ K} \]
\[3.1 \text{ K} \]
\[4.2 \text{ K} \]

\[F_1 = 125 \text{ T} \]
\[F_2 = 190 \text{ T} \]
\[2 \times F_1 \]

\[\text{FFT amp } T^{-1} \text{ (Arb. Units)} \]

\[F (\text{T}) \]

\[T = 0.6 \text{ K} \]
\[T = 1.5 \text{ K} \]
\[T = 2.5 \text{ K} \]
\[T = 3.1 \text{ K} \]
\[T = 4.2 \text{ K} \]

\[\text{Suchitra E. Sebastian et al., Nature 454, 200 (2008)} \]

\[\text{Better S/N ratio and enough wiggles (quantum oscillations)} \]

\[\text{Luis Balicas et al., PRL 100, 126405 (2008)} \]
When one gets more wiggles…

\[
F = F_0 + \Delta F
\]

where \(F_0 = 530 \, \text{T} \)

and \(\Delta F = 90 \, \text{T} \)
Techniques

AC-susceptibility: \(M_{AC} = \frac{dM}{dH} H_{AC} \sin \omega t \)

Detection circuit

Detection coil (superconducting)

Excitation coil

Good (even) for nearly isotropic Fermi surfaces

Magnetostriction: \(\frac{\Delta L}{L} (H) \)

G. M. Schmiedeshoff et al., RSI 77, 123907 (2006).

\[\tau \propto \frac{1}{F} \frac{dF}{d\theta} MB \]

torque-magnetometry, capacitive

torque-magnetometry, piezo resistive

Good for anisotropic (Q2D) Fermi surfaces
Techniques – an example and practical considerations

AC-susceptibility: \[M_{AC} = \frac{dM}{dH} H_{AC} \sin \omega t \]

Detection coils (blue):
- 1000s of turns using 12 – 50 µm wire
- “wet” wound using epoxy to fill any space
- Balanced within ~ 1 turn
- Use a well machined former in a coil winder

Freq = 777 Hz
Drive current = 5 mA
Techniques….(cont.)

- Clean single crystals with good RRR
- 4 contacts (at least) to avoid wire resistance as part of the measurement.
- Reasonable currents for good S/N ratio but to avoid self-heating….this also means low resistance contacts.

$V = IR$

$P = I^2 R$
• **TDO – tunnel diode oscillator**
 • Resonant circuit with frequencies ~ 20 – 500 MHz
 • Changes in the sample conductivity are observed by changing the coil inductance and the frequency at the ppm level.

$$f_0 = \frac{1}{2\pi\sqrt{LC}}$$

The Lifshitz-Kosevich formalism

For a given oscillatory component:

\[
\left(\frac{\vec{M}, \vec{\sigma}}{\sigma_b} \right) \propto \sum_{p=1}^{\infty} \left(\frac{-1}{p^{3/2}} \right) R_{T,p} R_{D,p} R_{s,p} \cos \left[2\pi p \left(\frac{F}{B} - \gamma \right) \pm \frac{\pi}{4} \right];
\]

\[
R_{T,p} = \left(\alpha \mu T / B \right) / \sinh(\alpha \mu T / B);
\]

\[
R_{D,p} = \exp(-\alpha \mu T_D / B);
\]

\[
R_{s,p} = \cos \left(\frac{\pi}{2} p g \mu / m_e \right)
\]

μ is the quasiparticle effective mass

$\alpha = 2\pi^2 k_B m_e / e\hbar = 14.7$ T/K;

$T_D = \hbar / 2\pi k_B \tau$ (the Dingle temperature)

m_e (is the bare electron mass)

Spin-zero angles: spin-up and spin-down Fermi surfaces interfere destructively.

Useful for, for ex., evaluating g

Using our Fermi surface data

CeRhIn$_5$

- Transport, heat capacity and dHvA via pulsed fields and capacitance cantilever in dc fields.
- Each technique helps tell part of the story of the evolution of the Fermi surface
Yamaji oscillations

β-(BDA-TTP)$_2$SbF$_6$

$\tan \theta = \frac{\pi}{ck_F} (n - 1/4)$

Application to cuprates

YBa$_2$Cu$_3$O$_{6+x}$ \(x = 0.56 \)

S. Sebastian, et al., PRB 81, 214524 (2010)
Instrumentation – Two-axis rotation

- Use an Attocube rotation system to add a ϕ component to rotation.
- Labview software has been used to make a user interface for aligning samples and automating measurements (work in progress).

![Graph showing resistance vs. angle](image_url)
Magnetic Breakdown and Quantum Interference

Stark quantum interference

\[B_{MB} = \frac{m^* E_g^2}{\hbar e E_F} \]

Magnetic breakdown

Q1D closely spaced Fermi surfaces

\((\text{Per})_2\text{Au(mnt)}_2\)

\((\kappa-(ET))_2\text{Cu(NCS)}_2\)
A new approach: Sweeping the Fermi level

Summary

- Fermi surfaces (FS) can be calculated from known RT lattice but cannot be trusted….measurements are needed.
- We have a large variety of experimental techniques to determine the temperature and angular dependence of the FS.
- From our data we can get the effective mass, scattering rates map out the shapes of the orbit(s) and learn something about the interactions that are important in a material.
- AMRO is powerful way to extract the cross-section of two-dimensional Fermi surfaces.
- Conventional techniques used for Fermi surface studies (transport, AC susceptibility, torque magnetometry…) are always being improved and modified,
 - New methods are being used with thin, carefully engineered devices (gate sweeping).
- If you think of a great idea for a Fermi surface measurement, please talk to a NHMFL user support scientist and let’s try it.

Many thanks to….
James Brooks
Stan Tozer
Luis Balicas
Ryan Stillwell
William Coniglio
Eric Palm
Tim Murphy
Ju-Hyun Park
Henri Radovan
Derrick Van Gennep
James Hamlin
Lauren Reiner
Andy Rubes
Dwight Rickel
Chuck Mielke
John Ferrell
Richard Desilets
Daniel McIntosh
Vaughan Williams
Mike Pacheco
Red Schwartz
Eun Sang Choi
Shinya Uji
Naoki Kikugawa
Keizo Murata
Manual Almeida
George Papavassiliou
All LANL personnel
References & Resources

Fermiology
• *Band Theory and the Electronic Properties of Solids* by John Singleton
• *Magnetic Oscillations in Metals* by David Shoenberg
• *Solid State Physics* by Neil Ashcroft and David Mermin
• *Introduction to Solid State Physics* by Charles Kittel

High Pressure
• *High Pressure Experimental Methods* by M. Eremets

“Hands-on” Knowledge
• *Experimental Techniques and Low Temperature Measurements* by Jack Ekin

THANKS!