FROM MAHAN EXCITONS TO LANDAU LEVELS AT HIGH MAGNETIC FIELDS: 2DFT SPECTROSCOPY REVEALS HIDDEN QUANTUM CORRELATIONS

D. Karaiskaj¹, J. Paul¹, P. Dey¹, C. E. Stevens¹, J. L. Reno², D. J. Hilton³

¹Department of physics, University of South Florida, 4202 East Fowler Ave., Tampa, Florida 33620
²CINT, Sandia National Laboratories, Albuquerque, New Mexico 87185, USA
³Department of Physics, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA

Two-dimensional electron gases have been the subject of research for decades. Modulation doped GaAs quantum wells in the absence of magnetic fields exhibit interesting many-body physics such as the Fermi edge singularity or Mahan exciton and can be regarded as a collective excitation of the system. Under high magnetic fields Landau levels form which have been studied using transport and optical measurements. Nonlinear coherent two-dimensional Fourier transform (2DFT) spectroscopy however provides new insights into these systems. We present the 2DFT spectra of Mahan Excitons associated with the heavy-hole and light-hole resonances observed in a modulation doped GaAs/AlGaAs single quantum well. These resonances are observed to be strongly coupled through many-body interactions. The 2DFT spectra were measured using co-linear, cross-linear, and co-circular polarizations and reveal striking differences. Furthermore, 2DFT spectra at high magnetic fields performed at the National High Magnetic Field Lab will be discussed. The spectra exhibit new features and peculiar line shapes suggesting interesting underlying physics.

Fig. 1: (a) Four phase stabilized laser pulses are obtained the multidimensional nonlinear spectrometer (MONSTR) operational at USF. Three beams A*, B, and C are used to generate the FWM signal. Heterodyne detection can be achieved by splitting a portion of the laser pulse and combining the signal (FWM) with reference (Ref) beam. By dispersing the heterodyned signal into the spectrometer and after Fourier transforming 2DFT spectra can be obtained. (b) Sample held at cryogenic temperatures and in magnetic field. The magnet shown is a realistic drawing of the 25 Tesla split coil magnet in Tallahassee, which became operational in 2011.

The work at USF and UAB was supported by the National Science Foundation under grant number DMR-1409473. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. Department of Energy, Office of Basic Energy Sciences user facility. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under Contract No. DE-AC04-94AL85000.

Category: MO
E-mail: karaiskaj@usf.edu