Tunable two-species Dirac fermions and quantum Hall effect in dual-gated three-dimensional topological insulators
Yang Xu1, Ireneusz Miotkowski1 and Yong P. Chen1,2

1Department of Physics and Astronomy, Purdue University, West Lafayette, IN 47907, USA
2School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907 USA

Topological insulators (TI) are a novel class of quantum matter with a gapped insulating bulk yet gapless spin helical Dirac fermions. Recently [1], we have shown surface-dominated conductance in an intrinsic 3D TI, BiSbTeSe\textsubscript{2} (BSTS), even close to room temperature for thin samples. In high magnetic field and low temperature, thin-flake samples exhibits well-developed quantum Hall effect (QHE), where the two parallel surfaces each contribute a half-integer e^2/h quantized Hall resistance, accompanied by vanishing longitudinal resistance. Such “half-integer” QHE is a hallmark of massless Dirac fermions.

Further [2], we performed local and non-local electrical and magneto-transport measurements in dual-gated BSTS thin film TI devices, with conduction dominated by the spatially separated top and bottom surfaces, each hosting a single species of Dirac fermions with independent gate control over the carrier type and density. We observe many intriguing quantum transport phenomena in such a fully-tunable two-species topological Dirac gas, including a zero-magnetic-field minimum conductivity of $\sim 4e^2/h$ at the double Dirac point, a series of ambipolar two-component “half-integer” Dirac quantum Hall states (see Fig. 1) and an electron-hole total filling factor $\nu=0$ state (with a zero-Hall plateau), exhibiting dissipationless (chiral) and dissipative (non-chiral) edge conduction respectively (Fig. 2). Such a system paves the way to explore rich physics ranging from topological magnetoelectric effects to exciton condensation.

Figure 1. (a) Longitudinal resistivity σ_{xx} and (b) Hall resistivity σ_{xy}, shown as 2D color maps, as functions of topgate voltage V_{tg} and backgate voltage V_{bg} at $B=18$ T and $T=0.3$ K, with (ν_t, ν_b) labeling (top, bottom) surface half-integer filling factor of corresponding QH state. The integer in (b) labels the total filling factor ν of each state.

Figure 2. Comparing (a) Local resistance R_{xx} and (b) non-local resistance R_{nl}, as functions of V_{tg} and V_{bg} at $B=18$ T and $T=0.3$ K. Inset is the corresponding measurement setup. At $(\nu_t, \nu_b)=(1/2, -1/2)$ or $(-1/2, 1/2)$, there’s an intriguing $\nu=0$ state, characterized by zero Hall plateau and simultaneously large local and nonlocal resistance.

Category: TM
Email: xu319@purdue.edu