Progress in Nanostructured Coated Conductors processing and development at EUROTAPES

(European development of Superconducting Tapes: integrating novel materials and architectures into cost effective processes for power applications and magnets)

Teresa Puig
Institut de Ciència de Materials de Barcelona, ICMAB-CSIC
Campus de la UAB, 08193 Bellaterra, Spain
Consortium on CC Materials development

Industrial and academic partners
PLD and CSD nanocomposite growth and vortex pinning
RABiT and ABAD tapes
buffer layers and simplified architectures
Long length and low/medium cost
Round cable: CORT

EUROTAPES
http://www.eurotapes.eu/
- 21 EU partners (9 countries)
- ~20 M€ (13.5 M€ - EU)
- 09/2012-02/2017

<table>
<thead>
<tr>
<th>Participant</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 ICMAB- CSIC: COORDINATOR</td>
<td>ES</td>
</tr>
<tr>
<td>2 Bruker HTS GmbH</td>
<td>DE</td>
</tr>
<tr>
<td>3 Italian National agency ENEA</td>
<td>IT</td>
</tr>
<tr>
<td>4 Institute of Electrical Eng. Slovak</td>
<td>SK</td>
</tr>
<tr>
<td>5 La Farga la Cambra</td>
<td>ES</td>
</tr>
<tr>
<td>6 IFW Dresden</td>
<td>DE</td>
</tr>
<tr>
<td>7 Nexans SA</td>
<td>FR</td>
</tr>
<tr>
<td>8 Oxolutia, SL</td>
<td>ES</td>
</tr>
<tr>
<td>9 PerCoTech AG</td>
<td>DE</td>
</tr>
<tr>
<td>10 Technical University of Cluj-Napoca</td>
<td>RO</td>
</tr>
<tr>
<td>11 Vienna University of Technology</td>
<td>AT</td>
</tr>
<tr>
<td>12 Institute Neel</td>
<td>FR</td>
</tr>
<tr>
<td>13 University of Antwerp</td>
<td>BE</td>
</tr>
<tr>
<td>14 University of Cambridge</td>
<td>UK</td>
</tr>
<tr>
<td>15 University Autonoma de Barcelona</td>
<td>ES</td>
</tr>
<tr>
<td>16 University of Ghent</td>
<td>BE</td>
</tr>
<tr>
<td>17 Evico</td>
<td>DE</td>
</tr>
<tr>
<td>18 Nexans GmbH</td>
<td>DE</td>
</tr>
<tr>
<td>19 Leitat Technological Center</td>
<td>ES</td>
</tr>
<tr>
<td>20 Theva</td>
<td>DE</td>
</tr>
<tr>
<td>21 Deutsche-Nanoschicht</td>
<td>DE</td>
</tr>
</tbody>
</table>
Collaborators

UCAM: J. Driscoll, A. Kursomovich

IFW-Dresden: R. Hühne, P. Pahlke

KIT-Karlsruhe: B. Holzapfel, J. Hänisch, M. Erbe

ENEA: G. Celentano, F. Rizzo

UGENT: I. Van Driessche, K. Keukeleere, Jonathan De Roo, S. De Vrieze

U. Antwerpen: G. Van Tendeloo, A. Meledin

TU Wien: M. Eisterer, M. Lao

TU Cluj-Napoca: T. Petrisor, L. Ciontela, B. Mos, A. Mesaros

Bruker: A. Usoskin, K. Schlenga

D-Nano: M. Bäcker, M. Falter

Theva: M. Bauer, W. Pruseit

Oxolutia: A. Calleja, R. Vlad, M. Vilardell, X. Sintas
Nanostructured Coated Conductors

Energy Future paradigm: cables, FCL, transformers, ...

Low and medium field, 77K
Devices already in grid

High field, 40-60K
Much activity with prototypes

Ultra-High field, 4.2K
Design stage, some prototypes

High Energy Physics, Fusion, Ultrahigh Field NMR, ...

EUROTAPES TARGETS:

• Length: +500 m

• Performance:
 • For low fields (B< 1 T):
 \[I_c (77 K, sf) > 400 \text{ A/cm-w}\]
 • For high fields (B ~3-5 T):
 \[F_p (60 K) > 100 \text{ GN/m}^3\]
 • For ultrahigh fields (B > 15 T):
 \[I_c (5K, 15 T) > 1000 \text{ A/cm-w}\]
 • Pre-comercial cost:
 \[\sim 100 \text{ €/kAm (77 K)}\]

Major concerns: MARKETABILITY

- High \(I_c\) and \(J_e\)
 (↑pinning, ↑thickness, ↓substrate thickness, simplified architectures)
- Low cost
 (↑production rates, ↑yield, ↑growth rates, wide tapes, chemical methods)
Growth of ReBCO Nanocomposites
Simultaneous deposition and growth
(Case PLD)

- Deposition
- Absorption
- Surface diffusion
- Self-assembly growth

Epitaxial nanorods form with YBCO simultaneously promoting semicoherent interfaces between nanorods and YBCO inducing localized strain

Main contribution:
Pinning landscape by secondary phases and high growth rate nanocomposites

Vortex pinning mostly ascribed to nanorods and associated interfacial strain
Mixed double perovskite nanocomposites

$\text{Ba}_2\text{Y(Nb}_{0.5}\text{Ta}_{0.5})\text{O}_6$ long self-segmented nanocolumns and Y_2O_3 nanoplatelets

$\varepsilon = 10\%$

$F_{p\text{max}} (H//c)$ = 25 GN/m³ at 77 K
$F_{p\text{max}} (H//c)$ = 750 GN/m³ at 10 K

among the highest values in literature

Vortices accommodate simultaneously to nanocolumns-segments and nanoplatelets

L. Opherden et al., Scientific Reports, 2016

G. Ercolano et al, SUST 24 (2011)
Mixed double perovskite nanocomposites

$\text{Ba}_2\text{Y}(\text{Nb}_{0.5}\text{Ta}_{0.5})\text{O}_6$ continuous nanocolumns

Characteristic of continuous nanocolumns, no segmentation

Among highest values of Irreversibility Line $B_{irr} (\text{BYNTO}) = 11 \, \text{T for H//c}$

The presence of ions with different diffusion (Nb^{5+}, Ta^{5+}) enriches the kinetics enabling several nanostructures

Rizzo et al, APL Materials, 2016
Fan-shaped BaHfO_3 nanorods by High Rate PLD on ABAD-YSZ (BRUKER) substrates

Growth rate 0.3 – 6.6 nm/s still epitaxial growth

YBCO + 6mol% BaHfO$_3$ at 1.3 nm/s

3-4 nm

YBCO

$\uparrow c$

BHO

20 nm

Y124 intergrowth

$\text{YBCO-BHO nanocomposite}$

YBCO

H//c

Broad c-axis peak, very effective at intermediate T

$\text{Pahlke et al., IEEE TAS 2015}$
BYNTO:YBCO and BHO:YBCO on ABAD-YSZ (BRUKER) and Ni5W (Dnano) and MgO-ISD (THEVA)

Nanocomposites Growth mode dependence on composition, substrate, T_{dep}, growth rate (0.3-4 nm/s)

1.3 nm/s, 1.5 μm
YBCO + BYNO liquid assisted PLD

YBCO compositions Cu and Ba rich to have a liquid phase in the film during PLD.

At 800 °C and 16 nm/s:
- Epitaxy is kept even at high growth rates at high thickness.
- Standard (no liq.) vs. liquid assisted PLD growth.
 - 1T, 77K
 - YBCO + BYNO + liquid
 - Liquid assisted PLD
 - 1 nm/s (0.06 μm/min)

No clear c-axis peak as nanorods are short.
Disorder/precipitation effects in Bruker PLD

Pressure triggered stoichiometry deviations ("intrinsic") + BZO nanorods ("extrinsic")

In 2016, HTS tapes were upgraded to 600m WITHOUT REDUCTION of Ic

I_c(4.2K,18T) = 1250 A/cm-w for 22 m
I_c(4.2K,18T) = 800 A/cm-w for 600 m
Industrial involvement in PLD CC processing: Nanocomposites fully implemented

YBCO\textsubscript{PLD}/CeO\textsubscript{2}\textsubscript{PLD}/YSZ-ABAD/SS
Effort on wider tapes

$I_c(4.2K,18T)= 800$ A/cm-w for 600 m

Capacity: 25 Km/yr in 4 mm
High field applications
Industrial involvement in PVD CC processing:
Nanocomposites in a second stage
Pilot production line for PVD 2G CC

GdBCO_{evap}/MgOepi/MgO-ISD/ Hastealloy
Effort on longer length

Tape production length:
 350 m (currently)
 600 m (Dec. 2016)
 1,000 m (max. capacity)
Capacity: 150 km/yr in 12 mm-width

60 m tapes 12 mm wide: $I_{c,\text{min}} = 600$ A
350 m tapes 12 mm wide: $I_{c,\text{min}} = 360$ A
Growth of ReBCO Nanocomposites

Sequential deposition and growth: CSD case

Main contribution:
Role of different secondary phases, colloidal nanocomposites, pinning contributions

Vortex pinning mostly ascribed to distributed local lattice distortions (nanostrain) induced by defects generated by the nanoparticles: Isotropic pinning
Nanocomposites by Chemical Solution Deposition with preformed nanoparticles

Stabilizing compound

Solvothermal synthesis –
(Thermal, Microwave, Autoclave, Hot injection)

CoFe$_2$O$_4$, MnFe$_2$O$_4$, CeO$_2$, ZrO$_2$, HfO$_2$, BaZrO$_3$, BaHfO$_3$

Requirements / achievements:

- Small size (< 10 nm range)
- Narrow size dispersion
- High concentrations (100 - 250 mM)
- Highly crystalline and dispersive
- Long time stability in alcoholic media and in YBCO ionic environment solutions
- Need control of all deposition and growth steps: avoiding reactivity, coarsening, pushing, sedimentation and agglomeration

Nanocomposites from \(\text{ZrO}_2 \) and \(\text{HfO}_2 \) preformed nanoparticles

Reactivity and coarsening occur (\(\text{BaZrO}_3, \text{BaHfO}_3 \))

NC with homogeneous dispersion of Np

A small YBCO buffer layer is needed in some cases

- Higher pinning
- Lower anisotropy and SF pinning

\(\gamma_{\text{eff}} \approx 3 \)

\(J_c (\text{MA/cm}^2) \) vs. \(\theta \) (deg)

- Standard
- 16% ZrO\(_2\) NPs
- 13% ZrO\(_2\) NPs
- 10% ZrO\(_2\) NPs

@ diff. Np synthesis
Nanocomposites of non-reactive preformed BaZrO$_3$ and BaHfO$_3$ nanoparticles

No reactivity nor coarsening occurs and high Np dispersion

Twice Np concentration than spontaneous segregated NC: $T_c =$90K, $J_c(77K)=3$ MA/cm2, $J_c(5K)=40$ MA/cm2
Nanocomposites of non-reactive preformed BaZrO$_3$ and BaHfO$_3$ nanoparticles

CSD Nanocomposites present very good pinning performances also at low temperatures.
Knowledge achieved from CSD- nanocomposites

Isotropic nanostrain
induce isotropic pinning

Random oriented nanoparticles
induce isotropic nanostrains

J. Gutierrez et al, Nat. Mater. 6, 367 (2007)
Vortex pinning in CSD - Nanocomposites

Good pinning performance at all temperatures for high fields

\[J_c^\text{strong}(T) = J_c^{str}(0) \exp \left[-3 \left(\frac{T}{T^*} \right)^2 \right] \]

\[J_c^\text{weak}(T) = J_c^{wk}(0) \exp \left(-\frac{T}{T_0} \right) \]

… from \(J_c(H,T,\theta) \) we separate the different components

Weak pinning contribution: cation vacancies?

Atomic scale defects (<1 nm) demonstrated

Cu – O vacancies within Y248 intergrowth → weak pinning ??

Avoids the Stoichiometry Catastrophe

YBCO + BaZrO₃

Faulted Y248

Cluster with ferromagnetism confirmed by XMCD synchroton radiation too

DFT calculations

2 V_{Cu} + 3 V_{O^-}

E/Cu=1.1 eV
CSD-Transient Liquid Assisted Growth of Nanocomposites: High growth rate and low cost

YBCO – 123 composition non-fluorinated precursors

Amorphous liquid BaCuO$_2$-CuO

Liquid identified by quench at pressure conditions where YBCO is not stable

Extremely low porosity and $J_c(77K)=3$MA/cm2

First trials on Nanocomposites with BZO preformed Np
Industrial involvement in CSD CC processing:

Nanocomposites in Lab. but on-line implementation in a later stage

All CSD approach on RABiTs: Buffer layer, HTS, Silver and Copper layer
Conductor with customized architecture: Copper electro-plating, Lamination,
Most interest in cables and FCL
Insulation, quality control

YBCO$^{\text{MOD}}$/CeO$_2^{\text{MOD}}$/LZO$^{\text{MOD}}$/ Ni5%W
Effort on longer length, wider tapes and performance

Expanded pilot line
May 2016

$I_c(77K,0T)/w > 250$ A/cm-w
$I_c(30K,1T)/w = 850$ A/cm-w
Length > 50 m
HTS layer thickness $= 1 \, \mu\text{m}$

Planned capacity > 200 km/yr

T. Puig-CCA2016
Industrial involvement in CC processing

First stages with nanocomposites achieved

Reel-to-reel Ink Jet Printing and growth pilot plant for ALL CSD on ABAD (Bruker)

10 m deposition stability proven for SDP, CeO$_2$ and YBCO

Homogeneous single pass 10 m SDP layer Y$_2$O$_3$ SDP/SS unpolished @ 35 m/h.
Now being tested by BRUKER

10 m Ce$_{1-x}$Zr$_x$O$_2$/YSZ ABAD/SS @ 28 m/h

10 m pyrolyzed YBCO/CZO/YSZ$_{ABAD}$/SS @ 15 m/h

> 1.9 μm pyrolyzed YBCO/CZO/YSZ$_{ABAD}$/SS single IJP deposition

Short samples I_c(77K, sf) = 108 A/cm-w for 900 nm
Conclusions and prospects

R&D

- Large knowledge on Nanocomposite growth has been reached for PLD and CSD
- Vortex pinning scrutinized for the different H,T regions for PLD and CSD
- Strong involvement on high growth rate nanocomposites
 - PLD (1-4 nm/s) and liquid-assisted PLD up to 16 nm/s
 - New CSD-transient liquid assisted growth: > 48 nm/s (EU ERC-Adv Grant)
- Nanocomposite Integration on technical substrates with large industrial involvement (ABAD-BRUKER, NIW-DNANO, ISD-THEVA)

Production

- BRUKER (ABAD): PLD CC demonstrated with >600 m with record values 800A/cm@18T and 4.2K
- THEVA (ISD): Evaporated CC demonstrated with 600 A/cm for 5 μm & 60 m
- D-NANO (RABiT): All CSD CC on RABiTs demonstrated with 250 A/cm for 50 m
- OXOLUTIA (ABAD): Steady progress in IJP of all-chemical CC on ABAD for thick R2R growth with single deposition and SDP layers

Integration

Future: More CC integration in devices → Adapt them to the different needs. → We need interdisciplinary consortiums and lots of discussions