Perspectives on IBAD Coated Conductors

Cost and Future

Follow up to the 2014 CCA presentation

Vladimir Matias
iBeam Materials, Inc.
Santa Fe, NM

Robert H. Hammond
Stanford University
Stanford, CA
25 Years of Coated Conductors

- Yasuhiro Iijima at Fujikura, 1991
- Typically takes 20 years to bring new materials to marketplace

First CC
IBAD-MgO Stanford
ORNL RABiTS
LANL first 1 meter CC
AMSC first commercial CC
SuperPower 10km to Sumitomo
6 Companies producing CC

Price of superconductor wire is critical for applications

- In 2010 proposed cost target for CC: $5/kAm (LN2)
- Cost of embodied materials: about $0.10 per kAm (with 1000 A/cm, 5 MA/cm²)
- Performed a bottom up analysis for coevaporation showing <$5/kAm is possible (~50,000 km/yr)
- Top down: cost should decrease due to scale up from 100 km to 100,000 km (10x); performance (A/cm) should increase by at least 2x; yield increases
- Vibrant industry: 15 companies are producing or intending to produce coated conductors

<table>
<thead>
<tr>
<th>Layer</th>
<th>Materials cost/kAm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ag (0.5 µm)</td>
<td>$ 0.06</td>
</tr>
<tr>
<td>YBCO (2 µm)</td>
<td>$ 0.02</td>
</tr>
<tr>
<td>IBAD+epi (MgO)</td>
<td>$ 0.0005</td>
</tr>
<tr>
<td>SDP layer (Y₂O₃)</td>
<td>$ 0.002</td>
</tr>
<tr>
<td>substrate (stainless)</td>
<td>$ 0.04</td>
</tr>
<tr>
<td>Total</td>
<td>$ 0.12</td>
</tr>
</tbody>
</table>
Coated Conductor Manufacturers

Tier I

AMSC, Mass. USA (RABiTS+MOD)
SuperPower, NY, USA/Japan (IBAD+MOCVD)
SuNAM Co. Ltd, Korea (IBAD+RCE)
SuperOx, Russia/Japan (IBAD+PLD)

Tier II

Fujikura, Japan (IBAD+PLD)
Bruker HTS, Germany (IBAD+PLD)
Theva, Germany (ISD+RCE)
STI, TX USA (IBAD+RCE)
Shanghai Superconductor, China (IBAD+PLD)

Tier III

d-nano (BASF), Germany (RABiTS+MOD)
Shanghai Creative Superc, China (IBAD+MOD)
SAMRI/CAS, Suzhou China (IBAD+MOCVD)
Oxolutia, Spain (IBAD+MOD)
Sumitomo, Japan (RABiTS+PLD)
Metox, TX USA (RABiTS+MOCVD)
Production and Price Trends

- Trend presented at last CCA
- Overcapacity in production
- At present CC Production volume is saturating; price is leveling off
- Companies are not profitable and price is too high for mass adoption
- Valley of Death?
- There is life after the Valley
- Only truly scalable approaches will win (need to scale 1000x)
WatterShed

- HTS-HVDC allows for multi-GW transmission over long distances
- Wattershed proposes connecting grids across oceans tracing shallow waters of continental shelves
- Phased approach with intermediate steps in building cables
Semiconductors using Iijima approach

 - Epi-Si on metal and glass
 - Demonstrated first solar cells using this approach
- Selvamanicakam et al (University of Houston): GaAs – 2009-2015
 - High quality GaAs on IBAD templates
 - Hall mobilities 60 - 300 cm²/ V-s (h, e)
25 Years of GaN LEDs

- Shuji Nakamura 1991: InGaN LED
- Solid State Lighting Revolution

First LED on sapphire
- Nichia starts selling HB LEDs
- p-doping
- First 1.5 mW HB LED

White Light LEDs
- 2nd gen LED GaN on GaN
- Sumitomo develops GaN substrate
- Flip chip LED

Nakamura, Akasaki, Amano win Nobel Prize

$20B LED Industry

Coated Conductors for Applications 2016, Aspen, CO, USA
Lessons from GaN

- Get product out to customers quickly
- Role of government funding and regulation:
 - Helped to obtain market adoption
- Chinese entry into market

EU Member States’ committee meeting of 8 December 2008: "Incandescent lamps will be phased out from the EU market starting 2009 and finishing in 2012"
Conclusions

- Technical progress on Coated Conductors for Applications has been amazing – we have come a long way in the last 25 years
- Clearly CC are here to stay – Magnet applications are validated
- However, still a long way to go for Electric grid applications
- The play is long term and companies need to survive the Valley of Death
- There is life through the Valley