Effect of Nanorods on Critical Current Density of RE123 Coated Conductors in Low Temperature and High Magnetic Field

S. Awaji¹, Y. Tsuchiya², S. Miura², Y. Yoshida², S. Fujita³, M. Daibo³, Y. Iijima³, K. Matsumoto⁴

¹HFLSM, IMR, Tohoku University,
²Department of Energy Engineering and Science, Nagoya University
³Fujikura Ltd
⁴Kyushu Institute of Technology
Fujikura Coated Conductors (IBAD / PLD)

Ion Beam Assisted Deposition (IBAD) Pulsed Laser Deposition (PLD)

R-to-R system with large ion source R-to-R system with hot-wall heating
A: "High-Jc condition," with typical growth rate of 5-7nm/sec.
B: "High-rate condition", with typical growth rate of 20-30nm/sec

Iijima et al, ASC2016, 4MOr3A-03
A purpose of this study is to understand the effect of APC on \(J_c \) properties in practical Fujikura’s tapes.

- Detailed \(J_c \) measurements were performed in high magnetic fields and wide temperature regions.
- The obtained data are compared to those of high performance By the \(J_c \) data comparison.

Sample: \(\text{EuBa}_2\text{Cu}_3\text{O}_y + 3.5\text{mol}\% \text{BaHfO}_3 \)
\[t \approx 1 \text{ um}, I_c \approx 300 \text{ A @77K, sf} \]
Jc properties for B//c

Fujikura APC (943-1)

T=4.2, 20, 30, 40, 50, 65, 77.3 K

$J_c (A/cm^2)$

$B/(T)$
Angle J_c properties

Large c-axis peak appears and shrinks with lower temperature.
Angle J_c properties at 77 K

When magnetic field increases, the c-axis J_c peak decreases and disappears at 10 T at 77 K.
The c-axis peak disappears at low temperatures and high fields.
J_c and F_p at low-T and high-B
F_p peak shifts to higher field with lower temperature.
Ideal case of nanoronds

\[T_{r\xi}: \text{crossover temperature } (r = \sqrt{2\xi}) \]
\[T_{dl}: \text{delocalization temperature } (d = l_{loc}) \]

\[B_{BG}: \text{Bose glass transition} \]
\[B_{rb}: \text{bundle field} \]
\[B_\phi: \text{matching field} \]
F_p properties

F_p peak shifts to higher field with lower temperature.

\rightarrow Contribution of random pinning is larger in lower- T!
Comparison of F_p/F_p^{max} curves at 4.2 K

c-axis correlated pin random pin
Conclusion

We investigated the flux pinning properties of practical Eu123 tapes with APC in Fujikura.

- Aligned short nanorods are found by TEM.
- The c-axis peak in $J_c-\theta$ appears in high temperature and high field region. But it disappears in low temperature.
- The flux pinning behaviors are similar to that in the LTG-Sm123 with inclined BHO nanorods.

- F_p curves show the cooperation of random and correlated pinning centers. But the contribution of random pinning is more strong especially in low temperature.