Characteristics, degradation limits, and failure mechanisms of REBCO coated conductors during a quench

Tengming Shen, Liyang Ye
Lawrence Berkeley National Laboratory
Coated Conductors for Applications, Aspen, Colorado
Sept 11-14, 2016

Acknowledgements: Justin Schwartz (NCSU), Pei Li, Mattia Duranti, Jason Wu (FNAL), David Larbalestier, Arno Godeke, Jan Jaroszynski, and Scott Marshall (NHMFL), Hugh Higley and Xiaorong Wang (LBNL)
Opening questions and comments

• How do superconductors fail during a quench?
• To what stress can your superconducting magnets/devices be designed to work?

• **Good news**: The temperature margin to degradation due to a quench is quantitatively predictable for Bi-2223, Bi-2212, MgB₂, and Nb₃Sn, and highly depends on the conductor strain state.
• **Bad + good news**: It is not much the case for REBCO, though the margin seems quite high.
Does the tensile test tell us the real axial tensile stress limit for composite superconductors?

Sumitomo DI-BSCCO Type HT-NX, >400 Mpa axial stress limit

(From internet)

(courtesy of NHMFL)
A simple technique tells us that the axial tensile stress limit is bending dependent.

Irreversible degradation starts. 160 Mpa

4.2 K, 15 T, B // Tape
Sumitomo DI-BSCCO
Type HT-NX.
Bending diameter = 50 mm

5% degradation, 185 Mpa,
What is the practical axial stress limit of a superconductor if potential damages from quenches are also considered?

Sumitomo DI-BSCCO
Type HT-NX.
Bending diameter = 50 mm
What is going on? – For Bi-2223, quench induced I_c degradation is *mostly* (axial) strain driven event.

- I_c degradation due to a quench is (axial) strain driven.
- Strain caused by a quench is localized, associated with T_{max} only, not dT_{max}/dx or dT_{max}/dt.

Thermal strain – thermal strain due to quench
$T_{\text{allowalbe}}(\sigma_a, r_b)$ is predictable, and it sets the practical practical axial stress limit for 2223-NX.
What about REBCO coated conductors? – Winding strain is small or even can be advantageous

- Axial tensile strain limit is 0.7%, instead of 0.5% for 2223/NX.
- Smaller bending strain, or better, compressive bending strain.

Sumitomo 2223 and Superpower SCSxx50
Axial strain effects during a quench on maximum working stress – some ballpark analysis

\begin{center}
\begin{tikzpicture}
\begin{axis}[
 width=\textwidth,
 height=\textwidth,
 xlabel={Strain ($\%$)},
 ylabel={Stress (MPa)},
 xmin=0, xmax=1.4,
 ymin=0, ymax=900,
 xtick={0,0.2,0.4,0.6,0.8,1,1.2,1.4},
 ytick={0,100,200,300,400,500,600,700,800,900},
 legend entries={SCxx50-40Cu, SCxx50-100Cu, NHMFL 32 T},
 legend pos=north east,
]
\addplot coordinates{(0,0) (0.4,400) (1,900)}; \addlegendentry{SCxx50-40Cu}
\addplot coordinates{(0,0) (0.4,300) (1,700)}; \addlegendentry{SCxx50-100Cu}
\addplot coordinates{(0,0) (0.4,200) (1,600)}; \addlegendentry{NHMFL 32 T}
\end{axis}
\end{tikzpicture}
\end{center}

Working zone with $T_{\text{allowable}} > 300 \text{ K}$.
1. $< 600 \text{ Mpa}$ for SCxx50-40Cu
2. $< 480 \text{ Mpa}$ for SCxx50-100Cu

Bending diameter=50 mm and tensile winding strain assumed.

Data from Yifei Zhang (Superpower) MEM2016
Temperature rise in the multilayered thin films also gives rise to shear stress and peeling stress.

Shear stress \(\tau_{\text{max}} = -kE_f^0 h_f \Delta \alpha \Delta T \)

Peeling stress \(p_{\text{max}} = -\frac{1}{2} kh_f \tau_{\text{max}} \)

Both of them and axial strain rise up with \(\Delta \alpha \Delta T \).

Peeling stress maximizes at the edge.
REBCO – high degradation limit (>600 K) without epoxy, and early degradation below 250 K with epoxy

Test conditions: 77 K, straight sample.

Axial strain not large enough to cause irreversible damages.
Early degradation in the epoxy impregnated samples, likely associated with epoxy impregnation, is rather localized.
Quench induced I_c degradation is rather localized – sample 1
Quench induced I_c degradation is rather localized – sample 2
Degradation mechanism expected: Delamination due to peeling stress developed in multi-layer films with a temperature rise

Sample 2 (with epoxy)
- $T_{\text{max}} \sim 750 \text{K}$
Final Quench
Delamination of Cu-Ag layer from REBCO layer

Sample 3 (w/o epoxy) – $T_{\text{max}} \sim 900 \text{ K}$
Degradation mechanism **unexpected**: Holes created by thermal shock – perhaps with local temperature exceeding 1000°C

Hole on hastelloy side - Sample 1 (Final Quench - $T_{\text{max}} \sim 450\text{K}$)

Hole on REBCO side - Sample 1 (Final Quench - $T_{\text{max}} \sim 450\text{K}$)
Concluding remarks

• For multifilamentary wires including Nb$_3$Sn, Bi-2212, MgB$_2$, and Bi-2223, quench induced I_c degradation is axial strain driven.
 • Their temperature margin to degradation, as measured by $T_{allowable}$, can be quantitatively predicted as a function of bending and axial stress σ_a on wire, using strain models.
 • $T_{allowable}(\sigma_a, r_b)$ sets the practical stress limit that superconducting magnets can be designed to.
 • CT-OP Bi-2223/NX given as an example.

• REBCO coated conductor – Its quench degradation is NOT axial strain driven, and mostly triggered by conductor delamination. Its degradation limit therefore varies with conductor delamination resistance, and is expected to be highly variable.