Cerebral blood flow (CBF) using a custom control data

Introduction

Migraine
- Recurrent disabling neurological disorder
- Afflicting more than 38 million people in the USA
- Fundamental understanding of the physiology behind migraine is lacking

Arterial Spin Labeling (ASL) at 21.1 T
- Non-invasive MRI used to measure quantitatively tissue perfusion by magnetically tagging blood
- Pulsed ASL variant employing flow alternating inversion recovery (FAIR) with EPI readout

Evolution of Cerebral Hemodynamics with Migraine

- **Methods**
 - 8 animal subjects – Sprague-Dawley rats
 - N=5 – injected with nitroglycerin (NTG)
 - N=3 – injected with saline
 - All anesthetized & loaded into 21.1-T magnet
 - FAIR EPI consists of:
 1. M₀ image with a FISP readout
 2. ASL FISP with non-selective, global inversion
 3. ASL FISP with selective inversion

 - For all three protocols, the readout parameters were identical. TI maps of each slice were acquired using 8 TIs (0.1-1 s).

 - Baseline ASL acquired for 30 min – **Pre-injection**
 - ASL acquired for up to 2 h – **Post injection**
 - Cerebral blood flow (CBF) using a custom Matlab® script calculated by:

\[
\text{CBF} = \frac{\Delta M\lambda}{2M_0} \left(\frac{1}{T_{1\text{blood}}} - \frac{1}{T_{1\text{app}}} \right)
\]

 - \(\Delta M \) – change in magnetization
 - \(M_0 \) – tissue magnetization
 - \(\lambda \) – blood-tissue water partition coefficient
 - CBF – blood flow
 - TI – inversion time
 - \(T_{1\text{app}} \) – flow dependent tissue relaxation time
 - \(T_{1\text{blood}} \) – blood relaxation time

Acknowledgements

- Funding provided by the:
 - NIH (2R01NS072497-06A1)
 - NSF and National High Magnetic Field Laboratory (DMR-1644779)
 - Maglab REU program

Results

Calculations
- Left and right lobes of the thalamus were measured separately
 - These values were averaged to give an overall value for the whole thalamus
 - The averaged values were normalized to baseline for each subject
- CBF values for each time point were averaged across all subjects
- Percent change (mean ± SD) was calculated in reference to mean baseline

Trends
- There is a slight discrepancy between left & right lobes of the thalamus
- Evident for both NTG and saline subjects
- Displayed in Figures 3 & 4

Discussion

- Figures 1 and 2 show the CBF maps & associated time course for migraine onset and progression
 - Control data – no significance in terms of perfusion or anesthesia impacts
 - Migraine data – increasing trend towards significance around 1.5 h post-injection
 - Return to baseline > 1.5 h post-injection

- No recruitment of capillary perfusion preceding behavioral migraine onset (45 min post-injection)

Future work
- Expand to include more subjects
- Explore other regions of the brain
- Evaluate the impact of migraine drugs on CBF
