Effects of leukoaraiosis on whole brain connectivity

John Chan¹, Luis Colon-Perez², Nadine Schwab³, Manish Amin⁴, Guita Banan⁴, Catherine Price³, Thomas Mareci⁵
¹Department of Engineering and Computer Science, University of Texas at Dallas, ²Department of Psychiatry, University of Florida, ³Department of Clinical and Health Psychology, University of Florida ⁴Department of Physics, University of Florida, ⁵Department of Biochemistry and Molecular Biology, University of Florida

Introduction
Leukoaraiosis, a disease that affects white matter tracts in the brain, impacts nearly every aging individual. This research analyzed how localized leukoaraiosis could affect the brain as a whole by examining the brain as a network of nodes.

Since leukoaraiosis damages the connections between nodes, we hypothesized that leukoaraiosis would reduce the connectivity between areas of the brain as a whole. To test this hypothesis, we calculated several network metrics of nodes in the brain and compared them against leukoaraiosis volume.

Methods

We started with a mask of leukoaraiosis and an MRI scan of ten elderly individuals. We then isolated certain regions of interest (ROIs) in each brain and calculated where the mask intersected with our ROIs using FSLMaths. Volume of the intersection was calculated using FSLStats.

To conduct network analysis of the brains, we used tractography tools created by the Mareci Lab. They allowed us to isolate the white matter tracts between regions of interest and calculate edge weights between each pair of nodes.

All statistical analysis and graph creation was done using R.

All the code used for this project can be accessed at www.github.com/jachan/la-project.

Relevant Literature


Results

For each of the brains, we calculated the volume of leukoaraiosis and created a matrix of edge weights. This allowed us to plot different network metrics against leukoaraiosis. The simplest metric used was mean edge weight. There was a correlation coefficient of -0.58 between mean edge weight and leukoaraiosis volume.

Another metric used was node degree. We plotted node degree versus leukoaraiosis volume for each of the eighty-two nodes within each brain. Then we performed a linear fit on the data for each node. The median correlation coefficient was 0.18.

The final metric we examined was node strength, which was also plotted against leukoaraiosis volume for each of the eighty-two nodes within each brain. The median correlation coefficient was -0.27.

Conclusions

This study shows that there is a strong negative correlation between mean edge weight and leukoaraiosis volume in the ten patients analyzed. This is consistent with what we hypothesized. However, it would be expected that localized leukoaraiosis would lower edge weights in affected areas, and therefore decrease the mean edge weight of affected brains.

Node degree and node strength were measures of connectivity that offered a better look at how leukoaraiosis affected each node individually. While node degree did not seem to correlate well with leukoaraiosis volume in the nodes, node strength did: 23 of the nodes had a correlation coefficient of less than -0.37 and the distribution had a median value of -0.27. This reveals a problem with node degree: because it is a binary measure, it often includes connections between nodes that have little impact on the full connectivity of the brain.

Future studies could examine how neighboring nodes are affected by nodes with leukoaraiosis, or look at the anatomy of the brain and examine how cognition is affected by leukoaraiosis in specific areas. This project suggests that future research into the effects of leukoaraiosis are promising, but more trials are needed to determine whether the levels of correlation found in this study hold with a larger sample size.

Acknowledgements

I thank Thomas Mareci for invaluable guidance and direction on the project and Luis Colon-Perez for helping interpret the network data. Nadine Schwab helped greatly by providing maps of leukoaraiosis. Finally, I thank the NSF and the National MagLab for funding the REU experience.