Molecular Characterization of the Water-Soluble Species Extracted from the Deepwater Horizon Crude by Negative-Ion Electrospray Ionization FT-ICR Mass Spectrometry

Alesha M. Shorts1, Jacqueline M. Jarvis2, Mmilili M. Mapolelo3, Ryan P. Rodgers2,3, Alan G. Marshall2,3

1Department of Natural Sciences, Gardner-Webb University, 110 South Main Street, Boiling Springs, NC 29317 USA
2Department of Chemistry and Biochemistry, Florida State University, 95 Chieftain Way, Tallahassee, FL 32306 USA
3National High Magnetic Field Laboratory, Florida State University, 1800 East Paul Dirac Drive, Tallahassee, FL 32310 USA

Introduction

On April 20, 2010, an explosion on the Deepwater Horizon (DWH) drilling unit caused the subsequent release of ~5 million barrels of crude oil into the Gulf of Mexico (GOM). Knowledge of the composition of this crude oil is instrumental in determining its fate in the aquatic environment. The GOM has rich and diverse marine fishing reserve and it supports commercial fishing for many communities in the Gulf Coast. Thus, the identification of water-soluble compounds in the crude oil is important so as to determine what components of the crude oil are likely to be of toxicological concern to a variety of aquatic organisms including fish. We applied a known procedure for the extraction of water-soluble species from crude oils.1 The water-soluble species from the DWH crude oil and the parent crude oil were subsequently characterized at a molecular level by use of negative-ion electrospray ionization (ESI) Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR MS).

Methods

A liquid-liquid extraction (LLE) was performed on DWH crude oil to extract two water-soluble fractions 1) neutrals & bases and 2) organic acids (see Figure 1). Extracts were dried under N2 gas until a stable mass was obtained. The DWH crude and its water-soluble extracts were analyzed at the National High Magnetic Field Laboratory by a custom-built 9.4 T FT-ICR mass spectrometer equipped with a micro-electrospray source. Samples were analyzed at a concentration of 250 μg/mL in 50:50 toluene/ methanol (v/v) with 0.5% (v/v) tetramethylammonium hydroxide as a modifier in the electrospray solvent system by negative-ion ESI FT-ICR MS. Data were calibrated and processed with a custom software package (PREDATOR).2

![Figure 1. Scheme of a liquid-liquid extraction (LLE) of water-soluble species in a crude oil (right). An emulsion of crude oil and seawater formed in the separation funnel (top left) during a LLE from which we procured the organic acids (bottom left) and neutrals & bases extracts.](image-url)

Figure 1. Scheme of a liquid-liquid extraction (LLE) of water-soluble species in a crude oil. An emulsion of crude oil and seawater formed in the separation funnel (top left) during a LLE from which we procured the organic acids (bottom left) and neutrals & bases extracts.

Analysis of extracts

125 mL filtered seawater in contact with 12.5 mL DWH crude for 1 week

100 mL filtered seawater added to break emulsion (in contact with DWH crude for 2 more days)

Add 12 M NaOH to increase pH (i.e, pH 12) to precipitate metal hydroxides

4 fold LLE with dichloromethane (DCM) at volume ratio (v/v) 2:1 DCM:water, extracts neutrals & bases

Filter aqueous layer with 0.45 μm nylon filter to remove metal hydroxides

Add 12 M H2SO4 to decrease pH (i.e, pH 2) to protonate organic acidic species

4 fold LLE with dichloromethane (DCM) at volume ratio (v/v) 2:1 DCM:water, extracts organic acidic species

Dissolve the DCM extracts with N2 gas and weigh the dry extracts

Conclusions

Compared to the DWH crude, there is a prevalence of higher oxygen-containing compounds in both water-soluble extracts. Within each water-soluble heteroatom class, there is a reduction in complexity evident by loss of compounds with carbon numbers > 40 relative to the parent crude (C# up to 75) as well as a shift in compositional space to lower carbon number and aromaticity. Previous results have shown a link between compounds with lower carbon number and aromaticity and increased water solubility.1,3

Acknowledgments

Work supported by NSF Division of Materials Research (DMR-06-54118) and the State of Florida. The authors thank John P. Quinn and Greg T. Blakeney for their continued assistance in experimental design and data analysis.

References