Two MagLab teams tried marrying vastly different technologies to build a new type of magnet: the Series Connected Hybrid. Decades later, has the oddball pairing panned out?

The compact coil could lead to a new generation of magnets for biomedical research, nuclear fusion reactors and many applications in between.

In a hydrogen-packed compound squeezed to ultra-high pressures, scientists have observed electrical current with zero resistance tantalizingly close to room temperature.

A young computer programmer was surprised by not one, but two awards for building systems crucial to running the lab's magnets.

Lab veteran Tim Cross has been named 2019-2020 Lawton Distinguished Professor by his peers.

Promising technique could be used to turn light into electricity and electricity into light.

Vincent Salters joins the elite ranks of American Geophysical Union fellows.

A material already known for its unique behavior is found to carry current in a way never before observed.

ASC Director

Lance Cooley is a professor in the Department of Mechanical Engineering at Florida State University, in addition to his MagLab roles as director of the Applied Superconductivity Center (ASC) and an associate lab director.

Cooley began his career in superconducting materials in 1986 at the University of Wisconsin – Madison, in the Applied Superconductivity Center under the direction of Prof. David Larbalestier. Lance’s early career, starting with his Ph.D. thesis, explored the ultimate limits of electric current in superconducting wires used for magnets. His thesis was awarded the Materials Research Society Graduate Award for the construction of periodic arrangements of flux-pinning centers at nanometer scale in superconducting wires. He earned a National Research Council Postdoctoral Fellowship at the National Institute of Standards and Technology in Boulder, Colorado, and later returned to Madison, Wisconsin, as a member of the research faculty to further investigate limits of superconductors.

The discovery of superconductivity in magnesium diboride in 2001 prompted Cooley to move to Brookhaven National Laboratory, where he eventually became head of the Superconducting Materials Group. He moved to Fermilab in 2007 to lead the SRF Materials Group, and later the Superconducting Materials Department. During this time, he coordinated external programs at multiple universities, laboratories and industry to improve performance of superconducting radio-frequency cavities and superconducting wires. This led to specifications and international standards related to niobium commerce, for which he received the International Electrotechnical Commission 1906 Award. He joined Florida State University and MagLab in 2017. He is also the manager of conductor acquisition for the Large Hadron Collider High-Luminosity Accelerator Upgrade Project as well as the head of Conductor Procurement and R&D for the National Magnet Development Program, both in the U.S. Department of Energy Office of High-Energy Physics.

Cooley serves as vice-president for publications for the IEEE Council on Superconductivity, which publishes the IEEE Transactions on Applied Superconductivity. He has served on many review panels of the U.S. Department of Energy and the National Science Foundation. He is a fellow of the Institute of Physics and a senior member of the Institute of Electrical and Electronic Engineers (IEEE). He has over 120 refereed publications, and has given more than 30 colloquia, plenary or public lectures.

See publications.

Email: This email address is being protected from spambots. You need JavaScript enabled to view it.

Photo credit: Stephen Bilenky

"GAP" award will help further breakthrough treatment system for next-generation superconducting magnets.

Page 1 of 14