22 February 2016

Winding an intercontinental record

Splicing coil for the superconducting magnet being built for the High Field Magnet Lab in Nijmegen, the Netherlands. Splicing coil for the superconducting magnet being built for the High Field Magnet Lab in Nijmegen, the Netherlands. Stephen Bilenky

This week at the lab, engineers are winding a coil for a new, hybrid magnet system that will match the field strength of our own world-record magnet.

Two teams from two magnet labs located on two continents have joined forces on this project.

The High Field Magnet Lab (HFML), located in Nijmegen, the Netherlands, is building a continuous-field magnet designed to generate a field of 45 tesla, which will tie the record now held by the MagLab’s 45 tesla hybrid magnet. The National MagLab is lending its expertise to the effort by building the superconducting portion of the magnet; the HFML is building the resistive portion.

In the end, five spools of cables containing a total of 2 km of superconducting wire will be joined and wound to form a 5-ton coil. The winding process alone requires several months. “Electrically you have to continue that path from one length of conductor to the next,” said MagLab engineer Iain Dixon, who is heading up the project. “There’s a lot of care and a lot of checks that go on to make sure that the bends are in the right place and the cuts are in the right place."

The inter-lab collaboration has meant a lot of back and forth for both teams. Andries den Ouden, head of superconducting magnet technology at Nijmegen, was in Tallahassee recently.

"During the project operation, there are no walls between the two labs," said den Ouden. "There's an open exchange of information … I think that's one of the key benefits."

The HMFL has also done work for the MagLab, including testing the current leads on the series connected hybrid magnet now nearing completion.


Text by Kristen Coyne / Photo by Stephen Bilenky.

Last modified on 22 February 2016