What's New at the Lab

There's a lot going on at the National MagLab. In this blog, we keep you up to date on the latest people, events and advances at our seven facilities.

Have you ever wondered how your diet affects your heart? Or your liver? And not just for your general health, but at a molecular level? What is that cheeseburger doing to your heart, anyway?

Matt Merritt, an associate professor of biochemistry and molecular biology at the University of Florida (UF), wants to help answer those questions. He studies the role of metabolic pathways in heart failure and fatty liver disease. Specifically, he looks at ATP — the molecule used by all living things to store and transport energy. The results of his work have the potential to improve our understanding and treatment of illnesses as wide-ranging as heart disease, diabetes and cancer.

Using nuclear magnetic resonance (NMR) magnets and instrumentation available at the National MagLab's AMRIS Facility at UF, Merritt studies how carbon is involved in ATP generation. However, phosphorus, another important element in the final step of ATP generation, has been beyond his reach because the special tool required to study it wasn’t available. Studying phosphorous requires a certain kind of probe — a stick-like piece of equipment that holds the sample and allows the scientist to insert it into the magnet.

Now, thanks to the addition of a new cryoprobe at the AMRIS Facility, Merritt and other MagLab users will be able to monitor phosphorus dynamics. With its electronics operating at very low, cryogenic temperatures, this probe enables monitoring of phosphorous-containing compounds at physiologic concentrations and will allow Merritt's group to gain a fuller understanding of metabolism (instead of studying carbon movement in isolation).

The new probe is larger (with a 10-mm diameter sample space) than existing cryoprobes in the facility and, in addition to phosphorus, can detect carbon and sodium isotopes, enabling researchers to obtain higher sensitivity data on larger samples. This probe is connected to a commercially built dynamic nuclear polarization (DNP) system, another recent addition to the AMRIS Facility. The new DNP system, called HyperSense, is more automated than the facility's current DNP set-up, and can be operated by a single person, making it more user-friendly. The HyperSense, which is attached to the 600 MHz 51 mm NMR & MRI/S System and the new cryoprobe, will be available to users by the fall of 2018.

Photo: Researchers Ram Khattri (left) and Mukundan Ragavan work with the new cryoprobe. Photo by Elizabeth Webb.

Story by Elizabeth Webb.

Paul Dunk, a chemist in the MagLab's Ion Cyclotron Resonance Facility, has published a paper on so-called "nanocages" formed by combining graphite, a two-dimensional form of carbon, with different metals. The research, Transformation of doped graphite into cluster-encapsulated fullerene cages, appeared this week in Nature Communications.

For the research, Dunk and his collaborators created metallofullerenes, molecules that consist of a ball-like carbon structure that encompasses several atoms inside of it — hence the term "nanocage."

Dunk and his colleagues tested theories of how these compounds form by looking for hypothesized intermediate molecules between the original reactants and end products. They demonstrated that, unlike what many scientists believed, the cages do not shrink from or break off of larger globs of carbon, but rather nucleate around the metal, carbon atom by carbon atom.

The findings could help in the future development of nanocage-related technologies ranging from new light-based electronics to molecular electronics.

Dunk's research was done in collaboration with scientists at the Universitat Rovira i Virgili in Spain and the University of Texas at El Paso.

Read more about this research in the MagLab's fields magazine.

Image of nanocages by Paul Dunk/Caroline McNiel.

In the past year the National MagLab has unveiled two world-record magnets, the 36-tesla series connected hybrid magnet and the 41.4-tesla resistive magnet.

These top-notch magnets require a top-notch infrastructure. So later this year, lab staff will install a new heat exchanger to keep up with the demands of its boundary-pushing instruments.

"We're trying to upgrade everything as the lab upgrades," explained plant engineer Tra Hunter. "The magnets are getting bigger and requiring more cooling water."

Magnets in the lab's DC Field Facility are powered by as much as 32 megawatts (MW) of electricity each and generate the heat to match. A complex array of pipes, chillers, heat exchangers, chilled water storage tanks and cooling towers keeps the instruments from overheating by flushing them with thousands of gallons of cold, de-ionized water a minute.

The new 35,000-pound heat exchanger features a stack of nearly 600 8x4-feet stainless steel plates. Warm water from the magnets flows in through one pipe and zigzags through alternating plates; chilled water flows in another pipe, snaking its way through the second set of plates. The cooled water picks up heat from the magnet water and carries it away.

"It's basically transferring 36 MW of heat from the magnet cooling water loop and transferring that to the chilled water loop," Hunter explained.

The $130,000 instrument is one of several end-of-year upgrades to the chilling system that will also include larger pipes and new water filters. It will help the plant run more efficiently and, as one of two similar units, and help ensure chilled water for the more than 1,700 users who come to perform research on the lab’s world–record magnets each year.

Story by Kristen Coyne. Photo by Stephen Bilenky.

MagLab-affiliated researcher and FAMU-FSU College of Engineering faculty member Subramanian Ramakrishnan has received a prestigious Centers of Research Excellence in Science and Technology (CREST) grant from the National Science Foundation.

The five-year, $4.9 million grant will establish the Center for Complex Materials Design for Multidimensional Additive Processing (known as the CoManD Center). This new center will tap into expertise of researchers at Florida A&M Univeristy (FAMU), the College of Engineering and the National MagLab to advance manufacturing at the micrometer scale for biological, aerospace and energy applications.

In association with the National MagLab, Ramakrishnan will direct the center’s first project, which focuses on developing nanostructured lightweight materials for shielding and sensing applications. Industrial Engineering Professor Tarik Dickens will direct the center’s second subproject, which will consist of developing materials/devices for energy applications in association with the High Performance Materials Institute. Pharmaceutics Professor Mandip Singh Sachdeva will direct the center’s third subproject, which includes developing materials/devices for biological applications such as a 3D printed tumor biosystem on a chip.

"The uniqueness of this award is the synergy between universities, national labs and defense labs," Ramakrishnan explained.

In addition to research, the grant will help support undergraduate courses based on the fundamentals of self-assembly, nanoparticle synthesis and characterization, additive manufacturing, nanomaterials in biology, and nanoparticles in medicine. The courses will be developed and offered to FAMU students. Also, a laboratory course in materials will be offered to graduate and undergraduate students involved in materials research. The center will work to produce 15 doctorate students, directly impact 40 undergraduates, and influence 100 graduate students and 300 additional undergraduates through collaborations and coursework.

Story by Kristin Roberts.

Scientists are welcoming a new MRI machine at the National MagLab that provides the best spatial resolution available for human imaging, making it a powerful tool for nationwide, multi-site health research.

Manufactured by Siemens, the state-of-the-art, whole-body scanner is powered by a 3-tesla magnet (tesla is a unit of magnetic field strength). But it's not the machine’s main magnetic field — on a par with many hospital MRIs — that makes the instrument special. Rather, the unit features the most powerful gradient magnet fields available, which help generate very sharp images of very tiny anatomical structures.

“Gradients provide the high spatial resolution in MRI, and with the new system we get the localization we need for small structures,” said Joanna Long, director of the MagLab's Advanced Magnetic Resonance Imaging and Spectroscopy (AMRIS) facility at the University of Florida, where the new instrument is located.

For anyone who has been inside an MRI machine, the gradient magnetic fields are responsible for that unpleasant racket you hear; technicians trigger them to target different areas of the body. But they also help generate more precise images – in this case, around a millimeter in resolution, allowing scientists to see bundles of neurons inside the brain. (Learn more about how MRI machines work).

As one of a number of similar machines recently installed around the country, the new system will enable researchers working at AMRIS to participate in large-scale, multi-site health studies. For example, some AMRIS researchers are using the machine as part of a years-long study to track brain cognitive development in adolescents. Others will use it for research on Alzheimer’s and Parkinson’s disorders. Glenn Walter, an associate professor in physiology and functional genomics at the University of Florida, is using it to develop MRI techniques to assess how effective drugs are at treating muscular dystrophy, a less invasive approach than muscle biopsy.

By allowing MagLab users to participate in such longitudinal studies, the $3 million system will yield high research dividends. “It's a really good example of how the magnetic resonance research program at the MagLab can leverage something bigger,” Long said.

To celebrate a trio of recent upgrades, including the new MRI machine, added dynamic nuclear polarization capabilities, and a new console for the 11-tesla MRI/S system, AMRIS hosted a reception and symposium this week.

Text by Kristen Coyne; Image courtesy of AMRIS.