Peat soils release carbon into the atmosphere when land is drained for use or warmed by a changing climate. The potential for carbon dioxide (CO₂) gas formation by aerobic microbial conversion depends on the soil’s organic carbon source. Soil content is determined by mean annual temperature, vegetation type, and land-use conditions.

In this research, soil samples were obtained from 125 global peatland ecosystems for analysis by solid-state nuclear magnetic resonance spectroscopy (ssNMR). A subset of 11 sites revealed that oxygen-alkyl chemistry (i.e., carbohydrates) are the strongest predictor of aerobic CO₂ production.

This research supports and extends previous studies of temperate and boreal peatlands that linked CO₂ production to polysaccharide or oxygen-alkyl carbon composition. This research also suggests that climate models can be improved by using oxygen-alkyl carbon content to predict risk of increased CO₂ production.

Facilities and instrumentation used: Peat samples were analyzed by magic angle spinning (MAS) ^{13}C NMR spectroscopy at the MagLab’s AMRIS Facility using a 3.2 mm E-free H/C/N probe built to a specialized MagLab probe design that protects the sample from chemical degradation.