REVERSAL OF THE UPPER CRITICAL FIELD ANISOTROPY AND SPIN-LOCKED SUPERCONDUCTIVITY IN K$_2$Cr$_3$As$_3$

F. F. Balakirev1, T. Kong2, M. Jaime1, R. D. McDonald1, C. H. Mielke1, A. Gurevich3, P. C. Canfield2, and S. L. Bud'ko2

1National High Magnetic Field Laboratory, Los Alamos National Laboratory, MS-E536, Los Alamos, New Mexico 87545, USA
2Ames Laboratory, US DOE and Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, USA
3Department of Physics, Old Dominion University, Norfolk, VA 23529, USA

We report the first measurements of the anisotropic upper critical field $H_{c2}(T)$ for K$_2$Cr$_3$As$_3$ single crystals up to 60 T and $T > 0.6$ K. $H_{c2}(T)$ was determined via resistivity [1] and proximity detector oscillator (PDO) techniques. Our results show that the upper critical field parallel to the Cr chains, H_{c2}^\parallel, exhibits a paramagnetically-limited behavior, whereas no evidence of paramagnetic pair breaking was observed with field perpendicular to the Cr chains. As a result, the curves H_{c2}^\perp and H_{c2}^\parallel cross at $T \approx 4$ K, so that the anisotropy parameter $\gamma(T) = H_{c2}^\perp / H_{c2}^\parallel$ increases from $\gamma \approx 0.35$ near T_c to $\gamma \approx 1.7$ at 0.6 K (Figure 1). This behavior of $H_{c2}(T)$ is inconsistent with triplet superconductivity but suggests a form of singlet superconductivity with the electron spins locked onto the direction of Cr chains [2].

Category: SC
Email: fedor@lanl.gov