ANISOTROPIC PHASE DIAGRAM OF THE FRUSTRATED SPIN CHAIN β-TeVO$_4$.

F. Weickert1, M. Jaime1, N. Harrison1, B.L. Scott2, A. Leitmae3, I. Heinmaa3, R. Stern3, O. Janson3,4, H. Berger5, H. Rosner4, and A. A. Tsirlin4.

1MPA-CMMS, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
2MPA-11, Los Alamos National Laboratory, Los Alamos, NM, USA
3National Institute of Chemical Physics and Biophysics, 12618 Tallinn, Estonia
4Max Planck Institute for Chemical Physics of Solids, 01187 Dresden, Germany
5Ecole Polytechnique Federale de Lausanne, Lausanne 1015, Switzerland

Complex many-body problems can be described by theoretical models particularly effective for one-dimensional (1D) spin systems. On the experimental side, many of the three-dimensional (3D) magnetic materials feature well-separated 1D chain that are only weakly linked together in a 3D framework. This combination provides excellent conditions to explore 1D physics and emergent phenomena. However, magnetic frustration renders the problem far more complex even in 1D.

The talk/poster will present experimental as well as theoretical data on β-TeVO$_4$ a candidate for a zigzag $S = \frac{1}{2}$ chain compound. Its magnetic behavior was initially described within the model of a uniform spin chain, although the presence of three low-temperature transitions at $T_{N1} \approx 4.7$ K, $T_{N2} \approx 3.3$ K, and $T_{N3} \approx 2.3$ K observed in susceptibility measurements point to a more complex interaction scheme. Recently, Saul and Radtke [1] performed a microscopic analysis of isotropic exchange couplings and suggested that β-TeVO$_4$ is a good realization of the J_1-J_2 chain model with ferromagnetic $J_1 = -18$ K and antiferromagnetic $J_2 = 48$ K coupling constants. Neutron diffraction experiments by Pregelj et al. [2] observed an incommensurate magnetic structure with propagation vector $k = (-0.208, 0, 0.423)$ below T_{N3}. The neutron scattering results revealed furthermore, the existence of an enigmatic stripe-like spin texture between T_{N2} and T_{N3} and spin-density wave (SDW) ordering between T_{N2} and T_{N3}.

In this work we explore the magnetic phases of β-TeVO$_4$ with measurements of the magnetization, specific heat, magnetostriction, thermal expansion performed on oriented single crystals at temperatures between 500 mK and 50 K and in magnetic fields to 50 T. The high field data were taken in a capacitor bank-driven pulsed magnet at NHMFL – LANL and complemented with measurements in a superconducting magnet below 9 T. Our comprehensive study allows for the first time a detailed mapping of the phase diagram in both directions, $H \parallel ab$ and $H \parallel c$. We find clear evidence for 5 different phases including full polarization of the magnetic moments above 23 T only weakly dependent on the crystal orientation. Surprisingly, the phase boundary of the saturation field splits into two distinct lines below 5 K. The magnetic phases occurring at fields below 10 T show significant magnetic anisotropy between $H \parallel ab$ and $H \parallel c$.

The nature of the different phases and regions in β-TeVO$_4$ is still far from being understood, but our results will stimulate further research on this interesting model compound.

[2] F. Weickert et al., to be published.

Category: LD
Email: weickert.ph@gmail.com