Skip to main content
National MagLab logo

The MagLab is funded by the National Science Foundation and the State of Florida.

Tags

Tag: Life research

MRI: A Guided Tour

These awesome diagnostic tools, powered by strong superconducting magnets, save countless lives with their ability to pinpoint tumors and other abnormalities.


The Wonderful World of MOFs

Follow us down this yellow brick road to learn how these deceptively small molecules conceal enormous potential for applications from carbon capture to data storage.


Making a Non-Heme Oxoiron(IV) Complex a Better Oxidant

This work investigates a series of oxoiron complexes that serve as models towards understanding the mechanism of catalysis for certain iron-containing enzymes.


Scientists Observe Molecular Movements in T Cells

Insights into the structure and movement of T cell surface proteins could lead to new ways to fight cancers, infections and other diseases.


Tuberculosis Metalloproteins Probed With High-Field Electron Magnetic Resonance

High-magnetic-field time-resolved electron magnetic resonance was used to probe the unusual manganese/iron complex that is believed to play a role in the disease-producing activity of tuberculosis “superbugs,” revealing a vacancy in the vicinity of the manganese that is believed to enable a target molecule to bind to the metal ion.


Targeted annotation of peptides by selective infrared multiphoton dissociation mass spectrometry

Protein oxidative damage is a common occurrence in a number of diseases, including cancer, neurodegenerative, and cardiovascular disease. Yet, little is known about its contribution to these illnesses. We developed a new technique, utilizing an infrared laser in combination with a mass spectrometer, to selectively identify sites of oxidation in complex protein mixtures. This sensitive and rapid platform may outperform current techniques and thus shed light on the involvement of oxidative damage in each of these diseases.


Ancient porphyrins indicate far earlier date for photosynthesis

Molecular fossils of chlorophyll (called porphyrins) more than 1.1 billion years old find suggest that photosynthesis began 600 million years earlier than previously established.


Researchers demonstrate method for analyzing molecules from bacteria cell walls

Scientists will be able to apply the technique to characterize similar molecules, helping develop vaccines and drugs to treat bacterial infection.


Identification of abnormal hemoglobin from human blood

Precise determination of hemoglobin sequence and subunit quantitation from human blood for diagnosis of hemoglobin-based diseases.


Ultrahigh Performance Molecular Imaging using the 21T ICR Magnet

Combining spatial imaging technology with ultrahigh performance FT-ICR mass spectrometry provides users with the unique ability to create tissue images of identified biomolecules. This technology will be applied to understand human health and disease.


Sunlight converts plastics into diverse chemical mixtures

Sunlight can chemically transform plastics from consumer plastic bags into complex chemical mixtures that leach into the ocean. Understanding the impact of plastic pollution requires advanced analytical techniques that can identify transformed plastic molecules in water samples, and requires instrumentation only available at the MagLab.


The Blood Proteoform Atlas: A reference map of proteoforms in human blood cells

A new Blood Proteoform Atlas maps 30,000 unique proteoforms as they appear in 21 different cell types found in human blood. The MagLab's 21 tesla FT-ICR mass spectrometer contributed nearly a third of the atlas' proteoforms.


A Deep Dive Into Forever Chemical Dark Matter

Using the world's most powerful mass spectrometer, scientists have developed a new method to profile complex PFAS mixtures at the molecular level, facilitating future PFAS characterization in support of environmental and human health studies.


More Accurate Diagnosis for Multiple Myeloma

New technique could lead to precise, personalized cancer diagnosis and monitoring.


Mapping the KRAS Proteoform in Colorectal Cancer

Researchers used the MagLab to produce the first clarified map of KRAS proteins in colon cancer tumors. Twenty-eight additional forms of the KRAS protein were discovered, including a new form of the protein (called clipped-KRAS) that does not bind to the cell membrane, instead serving as a kind of on-off switch to regulate cell growth. These findings may help yield future cancer treatments. 


Scouring Drinking Water for Disinfection Byproducts

Identification of toxic compounds in drinking water formed through disinfection reveals more than 3500 toxic, chlorinated species that can only be observed by the MagLab's high powered analytical instruments.


Evolution of the Molecules of Life on Distant Planets

The 21T FT-ICR MS instrument enables the molecular characterization of atmospheric hazes - like that on Saturn’s moon, Titan - and water vapor to better understand the evolution of biological molecules in exoplanet atmospheres. 


Imaging Current Flow in the Brain During Transcranial Electrical Stimulation

Scientists measured the first in vivo images of stimulated current within the brain using an imaging method that may improve reproducibility and safety, and help understand the mechanisms of action of electrical stimulation.


NMR-Based Metabolomics of Coral with Resistance to Bleaching

Three variants of the coral species A cervicornis were found to have unique metabolic signatures that can be distinguished by NMR spectroscopy. Differing levels of the metabolite trimethylamine-N-oxide, an important compound that protects against nitrogen overload, can distinguish the three variants studied. Understanding how species vary metabolically, and how that translates to species survival in stressed environments, may help us to establish desirable traits that could help with restoration and other interventions.


Brain Waste Pathway Found

Little is known about the path of metabolic waste clearance from the brain. Here, high-field magnetic resonance images a possible pathway for metabolic waste removal from the brain and suggests that waste clearance may be one reason why we sleep.


MRI Detects Brain Responses to Alzheimer's Disease Plaque Deposits and Inflammation

Magnetic Resonance Imaging (MRI) of mouse models for Alzheimer’s disease can be used to determine brain response to plaque deposits and inflammation that ultimately disrupt emotion, learning, and memory. Quantification of the early changes with high resolution MRI could help monitor and predict disease progression, as well as potentially suggest new treatment methods.


Deuterium Magnetic Resonance Can Detect Cancer Metabolism

Magnetic resonance of cancer cell metabolism is a novel technique to discern between cancerous and normal liver cells, providing a promising approach for cancer stage progression imaging without the harmful exposure of radiation.


Using Magnetic Resonance to Probe Lipid Synthesis in Response to Ketogenic Diet

Non-alcoholic Fatty Liver Disease and its progression to more serious diseases will become the main cause for liver transplant in the next 5 years. Here, researchers used deuterium magnetic resonance to study dietary influences on lipid synthesis demonstrating that high fat ketogenic diets significantly slow de novo lipogenesis, a process by which excess carbohydrates are covered into fatty acids and stored as triacylglycerols.


HTS NMR Probe Tracks Metabolism Cycles During Insect Dormancy

An insect's ability to survive anaerobic conditions (without oxygen) during winter pupation occurs through periodic cycling of aerobic respiration pathways needed to recharge energy and clear waste. The cellular mechanisms at play during these brief near-arousal periods can provide clues to help improve the success in storage and transplant of human organs.


Mystery of the Origin of MRI Signal in Stroke Solved

MRI scans taken after a stroke show brightness around the injury, the origins of which have been a long-standing and vexatious mystery for scientists. This work suggests these MRI signal changes result from fluid changes in glial cell volumes, results that could advance our ability to distinguish reversible and irreversible stroke events or provide a better understanding for other disorders such as Parkinson's, Alzheimer's, and mood or sleep disorders. 


Atomic-Level Insights into How Polymers Improve Protein Therapeutics

Using NMR, researchers determined a molecular model of a protein-polymer conjugate, providing new insights into how polymers can be used to make protein drugs more robust.


Uncovering the Secrets of Fungal Cell Walls

With unprecedented sensitivity and resolution from state-of-the-art magnets, scientists have identified for the first time the cell wall structure of one of the most prevalent and deadly fungi.


Scientists Identify Potential Biomarker for Brain Diseases

With advanced techniques and world-record magnetic fields, researchers have detected new MRI signals from brain tumors.


Liquid State Dynamic Nuclear Polarization at High Magnetic Field

This finding demonstrates a path forward to dramatically enhance sensitivity for molecule concentration measurement by magnetic resonance using Overhauser DNP.


Analytical Tool for in Vivo Triple Quantum MR Signals

Magnetic resonance (MR) signals of sodium and potassium nuclei during ion binding are attracting increased attention as a potential biomarker of in vivo cell energy metabolism. This new analytical tool helps describe and visualize the results of MR experiments in the presence of in vivo ion binding.


Probing Metal Organic Frameworks with 17O NMR at 35.2 T

Metal-organic frameworks (MOFs) are porous materials with high surface areas that can host a variety of different guest molecules, leading to applications in catalysis, drug delivery, chemical separation, fuel cells, and data storage. In order to design better MOFs, knowledge of their molecular-level structures is crucial. At the MagLab, the highest-field NMR spectrometer in the world was used to probe the complex structures of MOFs both "as built" and as they exist when other "guest" molecules are inserted inside the framework.


Structure of Boron-Based Catalysts from 11B Solid-State NMR at 35.2T

Measurements performed at the National High Magnetic Field Laboratory provide unique insight into molecular structure of next-generation catalysts for the production of the widely used industrial chemical, propene.


A New Method for Understanding Dynamic Nuclear Polarization

A new method to study how the nuclei of atoms “communicate” with one another in the presence of unpaired electron spins has been developed at the MagLab. Known as hyperpolarization resurgence (HypRes), this method benefits and expands the application of a revolutionary technique known as dynamic nuclear polarization (DNP), which provides enormous signal enhancements in nuclear magnetic resonance (NMR) experiments.


Understanding How Fungi Build Their Cell Walls for Protection

Scientists have used high-field nuclear magnetic resonance (NMR) to reveal how fungal pathogens use carbohydrates and proteins to build their cell walls (the protective layers outside of the cell). These findings will guide the development of novel antifungal drugs that target the cell wall molecules to combat life-threatening diseases caused by invasive fungal infections.


Imaging Enzyme Active Site Chemistry Using Multiple Fields up to 35.2T

This new technique for mapping out atom placements in the active site of enzymes could unlock the potential for finding new therapeutics.


Finding Water Molecules with Important Biological Activity

A new 17O solid-state NMR technique, employed on the highest-field NMR spectrometer in the world (the 36 T Series Connected Hybrid), identifies water molecules in different layers of a model membrane for the first time.


Integration of 17O into the Biomolecular Toolkit

Combining high magnetic fields, specialized probes, and measurement techniques, this work adds the crucial 17O nucleus into the study of biomolecules like peptides, proteins, and enzymes. 


Inside Velvet Worm Slime: Rare Protein Modification for Fast Fiber Formation

A protein modification rarely found in terrestrial animals was discovered in the slime of the velvet worm. This slime, which is projected for prey capture and self defence, turns into strong, sticky, water-soluble fibers. Dynamic nuclear polarization - nuclear magnetic resonance (DNP-NMR) facilities at the MagLab were used to understand the molecular structure of these fibers, work that may inspire the development and production of new classes of sustainable, advanced materials.


AMRIS FAIR Data: Standardizing Rat Brain Imaging Datasets

Datasets of rat brain imaging can be difficult to compare due to the different conditions used to collect them. The Advanced Magnetic Resonance Imaging and Spectroscopy (AMRIS) Facility participated in a multi-institution study to develop a standardized protocol for functional MRI rat brain datasets, work that will help data be reused effectively to yield new discoveries. 


Study on Motor Neuron Proteins Lands on Cover of Cell

Research sheds new light on the formation of harmful structures that can lead to neurodegenerative diseases.


MagLab’s Newest World-Record Magnet Open for Science

State-of-the-art ion cyclotron resonance magnet system offers researchers significantly more power and accuracy than ever before.


National MagLab to Receive $184M NSF Renewal Grant

The National Science Foundation announces five-year funding grant for continued operation of the world’s most powerful magnet lab.


International Science Leaders Meet at the MagLab

The visit marked the first time the Group of Senior Officials for Global Infrastructures has met in the United States.


Best Research of 2017

35 highlights out of 423 reports representing the best of life sciences, chemistry, magnet science and technology, and condensed matter physics.


Ancient Rocks Provide Clues About Earth's Early History

MagLab data provide compelling evidence that extensive oxygenation took place in the ocean millions of years before the atmosphere’s “Great Oxidation Event.”


In Ancient Oceans, Oxygen Loss Triggered Mass Extinction

In findings that could shed light on current climate changes, researchers find conclusive evidence linking rising sea levels and lowering oxygen levels to decimation of marine species.


Researchers Discover Sodium-Migraine Link Before Pain Occurs

Findings clarify the role of sodium increase early in migraines and point to the region where symptoms may start.


$3.3 Million NIH Grant to Fund MagLab Research

Researchers at the National MagLab will study the role sodium plays in this painful disease and test treatments that could offer relief.


"Water Wires" May Play Bigger Role in Cell Functions

New insights challenge current understanding of how ion transport through some cell membranes works.


New Agreement to Bolster Industry Partnerships

Tallahassee Company MagCorp to Partner with National MagLab.


International Study Shows Asteroids as Past, Possible Future Water Source

New research finds evidence that Earth's water originated in asteroids.


MagLab Researchers Find Oxygen Spike Coincided with Ancient Global Extinction

Researchers believe the ocean oxygenation occurred over a few tens of thousands of years, a very brief period in Earth’s geological history.


FT-ICR Facility Gets New World-Record Magnet

The MagLab and the Bruker Corporation have installed the world’s first 21 tesla magnet for Fourier Transform Ion Cyclotron Resonance (FT-ICR) mass spectrometry.


Ancient Meteorite Offers Glimpse at the Origins of our Solar System

MagLab analysis finds the space rock is among the most complex materials.


NIH Invests in MagLab Biomedical Advances

Improving technology for research of biomolecules and advancing our understanding of health and disease.


MagLab Scientist Honored for Contributions to Nuclear Magnetic Resonance

MagLab NMR Facility Director Rob Schurko was awarded the Vold Prize for his contributions to the field of solid-state NMR over the past 25 years.


MagLab to analyze environmental impact of Maui wildfires

"We're opening up the world at a molecular level to understand how these fires are going to impact us."


MagLab Investigates the Structure of a Key COVID-19 Protein

Researchers are working to characterize the virus’ envelope protein, or E protein, believed to be key to virus activity.


MagLab Celebrates Invention that Transformed Chemistry Research, and the Man Behind it

The first mass spectrum from Fourier-Transform Ion Cyclotron Resonance happened in December 1973. The co-inventor went on to build MagLab’s world-renowned program.


Shattering STEM Stereotypes

A MagLab biomedical engineering research group blazes a trail for women in science.


Combatting COVID: Digging Deeper for COVID-Causing Proteins

Researcher digs below the coronavirus's membrane in search of another layer of infection-causing proteins. 


Combatting COVID: Setting the Science Straight on a COVID Protein

For membrane protein expert Tim Cross, solving the structure of a misunderstood protein put retirement on hold.


Combatting COVID: COVID Drug-Target Dragnet

The virus that causes COVID-19 has thousands of potential drug targets. A global team is on a hunt for the best candidates.


Double Whammy

What happens when a kid with ADHD sustains a concussion? Using high-field magnets, researchers are working to find out.


Mapping the Brain's Weird Web of Waste

Using advanced MRI, a mechanical engineer tackles the question: "Why do you have these big fluid spaces in your head?"


Can a Witch’s Hat Help Solve the Spell of Tuberculosis Super Bugs?

New research is a first step toward understanding how a certain protein may help tuberculosis bacteria survive.


MagLab Tests a New Way to Look at the Lungs

MagLab researchers and doctors at the University of Florida are testing a new MRI technique that can deliver images of the lungs like never before


Meet the 21 Tesla ICR Magnet

Used to perform complex chemical analysis, this magnet offers researchers the world's highest field for ion cyclotron resonance mass spectrometry.


Meet Kendra Frederick

It's freaking hard to examine proteins closely in their native habitat. With the help of very clever magnet instrumentation, University of Texas scientist Kendra Frederick is up for the challenge.


Meet Andreas Neubauer

Andreas Neubauer took the extended stay option during his recent trip to the MagLab. After all, you can't rush art — especially when it's mixed with science.


Hemoglobin

ICR technology helps identify new kinds of hemoglobin abnormalities.



Last modified on 10 August 2022