Comprehensive angle-resolved quantum oscillation measurements on YBa2Cu3O6+x in magnetic fields approaching 100 tesla are used to address longstanding problem of the normal state electronic of underdoped high temperature superconducting cuprates. The symmetry of the Fermi surface points uniquely to its reconstruction by biaxial ordering of the charge and bond degrees of freedom.

Scientists working at the MagLab have made a breakthrough in identifying the state from which high-Tc superconductivity emerges. Their results are in the June 19th issue of the journal Nature.

The Pulsed Field Facility has the world’s only scientific program that has delivered scientific results in non-destructive magnetic fields up to and exceeding 100 tesla.

This amazing magnet, located at the MagLab's Pulsed Field Facility inside the Los Alamos National Laboratory in New Mexico, produces the highest non-destructive field in the world.

Multiferroics — “Spintronics without heat” — coupled ferromagnetism and ferroelectricity can provide a new class of functional materials for needed applications including magnetic sensing, data storage and manipulation, high–frequency and high–power electronics, and energy savings.

Magnetic systems provide controllable “model” systems to study interacting many body quantum effects, relevant to poorly understood problems beyond the realm of magnetism. For example, disorder leads to Bose glass behavior, enabling study of the Bose-glass to BEC transition in quantum magnets — a key component to understanding the superconductor-to-insulator quantum phase transition. High magnetic fields drive Bose glasses into Bose-Einstein condensates.

Page 2 of 2