Emergent Phenomena in

Driven Quantum Materials

Andrea Cavalleri

Max Planck Institute for the Structure and Dynamics of Matter Department of Physics, University of Oxford

Quantum Materials do "big things"

Macroscopic properties determined by quantum mechanics

Exhibit large response functions and extreme sensitivity

High T_c Superconductivity

Topologically Protected Transport

Quantum Materials – difficult to optimize

Magnetoresistive Manganites

High Tc Superconductors

Materials Growth

Phase competition on similar energy scales

Chemical doping

Control of quantum materials by non-standard means

Important scientific advances and **new physical phenomena** are expected in settings in which quantum materials are exposed to unconventional fields

Synthetic Quantum Materials

Extreme strain

Quantum Materials in **Quantum Cavities**

We look for new physics in driven quantum materials

Generating hidden phases

Cooling fluctuations

Renormalizing the energy landscape

60 years of Nonlinear Optics in the visible

Nonlinear Optics for quantum Materials – low frequencies

Until recently only FELs could provide strong far IR

Modern Tabletop Optical Sources: strong fields across the spectrum

Modern Tabletop Optical Sources: strong fields across the spectrum

Periodically driven lattices

E ~ MV/cm

Displacements ~ %

Inducing new Crystal Structures with Light

Hidden Phases

M. Rini et al., Nature 449, 72 (2007)

Switching ferroelectricity

A. von Högen et al. Nature 555, 79 (2018)

T.F. Nova et al. Science 364, 1075 (2019)

M. Henstridge et al. Nature Physics (2022)

Controlling Magnetism and Topology

Induced ferromagnetism

- T. F. Nova et al., Nature Physics 13, 132 (2017)
- A. Disa et al., Nature Physics 16, 937 (2020)
- A. Disa et al., Nature 617, 73 (2023)

Induced Topology

J. Mciver et al., Nature Physics 16, 38 (2020)

Today's talk: Controlling Superconductivity

- (1) Control pairing fields
- (2) Control "phase" coherence

Enhancing Superconductivity with radiation: history

UV irradiation

Nieva, G. *et al. Applied Physics Letters* 60, 2159-2161, (1992). Yu, G. *et al. Physical Review B* 45, 4964-4977, (1992).

Wyatt, A. F. G., *Physical Review Letters* 16, 1166-1169, (1966). G. Eliashberg., M. *JETP Letters* 11, 114, (1970).

Control of Superconductivity in Organics

M. Mitrano et al., Nature 530, 461-464 (2016)
A. Cantaluppi et al., Nature Physics 14, 837 (2018)
M. Budden et al., Nature Physics 17 611 (2021)
E. Rowe et al., Nature Physics (2023)

M. Buzzi et al, *Phys. Rev. X* 10, 031028 (2020) M. Buzzi et al, *Phys. Rev. Lett* 127, 197002 (2021)

Control of Superconductivity in Cuprates

D. Fausti et al, *Science* 331, 6014 (2011)
D. Nicoletti et al, *Phys Rev B* 90, 100503 (2014)
K. Cremin et al. PNAS 40, 19875 (2019)
M. Nishida et al. ArXiv2303.01961 (2023)

- W. Hu et al, Nature Materials 13, 705 (2014)
- B. Liu et al, Phys. Rev. X 10, 011053 (2020)
- A. Von Hoegen et al. Phys. Rev. X 12, 031008 (2022)

Control of Superconductivity in Cuprates

- D. Fausti et al, *Science* 331, 6014 (2011)
 D. Nicoletti et al, *Phys Rev B* 90, 100503 (2014)
 K. Cremin et al. PNAS 40, 19875 (2019)
 M. Nishida et al. ArXiv2303.01961 (2023)
- W. Hu et al, Nature Materials 13, 705 (2014)
- B. Liu et al, *Phys. Rev. X* 10, 011053 (2020)
- A. Von Hoegen et al. Phys. Rev. X 12, 031008 (2022)

YBa₂Cu₃O_x: signatures of equilibrium superconductivity

B. LIU et al. PHYS. REV. X 10, 011053 (2020)

Driven YBa₂Cu₃O_x

YBa₂Cu₃O_x: signatures of induced coherent transport

B. LIU et al. PHYS. REV. X 10, 011053 (2020)

Ő

YBa₂Cu₃O_x: signatures of induced coherent transport

$$\sigma_1(\omega) + i\sigma_2(\omega) = \frac{\sigma_0}{1 - i\omega\tau}$$

Figure of merit – Extrapolated DC resistivity

$$\frac{1}{\rho_0} = \lim_{\omega \to 0} \sigma_1(\omega)$$

Ì

YBa₂Cu₃O_x: signatures of induced coherent transport

$$\sigma_1(\omega) + i\sigma_2(\omega) = \frac{\sigma_0}{1 - i\omega\tau}$$

$$\frac{1}{\rho_0} = \lim_{\omega \to 0} \sigma_1(\omega)$$

Extrapolated DC resistivity $\sigma_2 \left(\Omega^{-1} \text{cm}^{-1}\right) \sigma_1 \left(\Omega^{-1} \text{cm}^{-1}\right)$ 55 (b)4 Dissipative ρ₀(m Ω cm) (c)4 1ps **Induced coherence** ~ 40 60 80 20 0 000000 Frequency (cm⁻¹) 5 10 0

ρ_0 vs. time for four different pulse durations

A. Ribak et al. Phys. Rev. B 107, 104508 (2023)

YBa₂Cu₃O_x: density of Cooper pairs

Zero temperature superfluid density

Up to very high temperatures: pseudogap scale

W. Hu et al., Nat. Mater. 13, 705 (2014)

S. Kaiser et al., Phys. Rev. B 89, 184516 (2014)

Does this state also expel a magnetic field ?

Meissner effect ?

Does this state also expel a magnetic field ?

People

Meissner Effect

Initial Metallic State

Superconducting State

Ultrafast Faraday Magnetometry

Calibration 1: Static B-Field Expulsion

Calibration 2: Disruption

Averitt et al. PRB 2001

Calibration 2: disruption of Superconductivity

Dynamics: Superconductor to Metal

Enhancement $(T > T_c)$

1/9/24

Ultrafast Meissner Effect

Sebastian Fava

Ultrafast Meissner Effect

S. Fava, G. DeVecchi, G. Jotzu, M. Buzzi et al. forthcoming

A colossal diamagnetic response

S. Fava, G. DeVecchi, G. Jotzu, M. Buzzi et al. forthcoming

The Ultrafast Meissner effect: electrodynamics

The Ultrafast Meissner effect: electrodynamics

-1

Time delay (ps)

Temperature Dependence

Magnetic

S. Fava, G. DeVecchi, G. Jotzu, M. Buzzi et al. forthcoming

Outlook: YBa₂Cu₃O_x disk-shaped lamellas

 $150~\mu m$ diameter $2~\mu m$ thick YBCO disk

Lamellas through microstructuring

What is the physics of nonlinear phonons ?

Femtosecond X-ray Scattering: New Crystal Structure

with A. Subedi, A. Georges

R. Mankowsky et al. Nature 516,71 (2014)

New crystal structure in YB₂Cu₃O_{6+x}

R. Mankowsky et al. Nature 516, 71 (2014)

How does the driven mode couple to interlayer tunneling

Tri-linear coupling: one phonon and two plasmons

$$U_{non-linear} = \frac{1}{2}\omega_{IR}^2 Q_{IR}^2 + \frac{1}{2}\omega_{J_1}^2(q) J_1^2 + \frac{1}{2}\omega_{J_2}^2(q) J_2^2 + \mathbf{A} q^2 Q_{IR} J_1 J_2$$

M. Michael *et al.*, Phys. Rev B 102, 174505 (2020)M. Michael *et al.*, Phys. Rev B 105, 17301 (2022)

with Marios Michael, Eugene Demler

Three mode mixing – one phonon and two plasmons

$$\ddot{Q}_{IR} + 2\gamma_{IR}\dot{Q}_{IR} + \omega_{IR}^2 Q_{IR} = Z^* E(t)$$

 $\ddot{J}_1 + 2\gamma_{J_1}\dot{J}_1 + \omega_{J_1}^2(q)J_1 = -aq^2Q_{IR}J_2$

 $\ddot{J}_2 + 2\gamma_{J_2}\dot{J}_2 + \omega_{J_2}^2(q)J_2 = -aq^2Q_{IR}J_1$

Resonant if $\omega_{IR} = \omega_{IP1} + \omega_{IP2}$

Measuring coherent dynamics: time resolved SHG

A. Von Hoegen et al. Phys. Rev. X 12, 031008 (2022)

1) Frequency resonant three mode mixing

M. Michael et al., Phys. Rev B 102, 174505 (2020)

A. Von Högen et al. Phys Rev X 12, 031008 (2022)

25

20

15

10

S

Frequency (THz)

2) Exponential amplification of the plasma mode

A. Von Högen et al. Phys Rev X 12, 031008 (2022)

M. Michael et al., Phys. Rev B 102, 174505 (2020)

3) Amplification at finite momentum

A. Von Högen et al. Phys Rev X 12, 031008 (2022)

M. Michael et al., Phys. Rev B 102, 174505 (2020)

4) Complex Mode symmetry – not a phonon

A. Von Högen et al. Phys Rev X 12, 031008 (2022)

Normalized FFT Amplitude

5) Anomalous temperature dependence (up to T^{*})

A. Von Högen et al. Phys Rev X 12, 031008 (2022)

Similarities with polariton condensates, time crystals.....

Do these explain the optical and magnetic properties?

Acknowledgements

N. Taherian

Alexander von Hoegen

Michael Fechner

Bernhard Keimer

Michael Först

Albert Liu

Marios H. Michael

Eugene Demler

Sebastian Fava

Giovanni De Vecchi

Michele Buzzi

Gregor Jotzu

Is this model unique?

With two phonons – I have TWO possible resonances

THREE MODE MIXING

 $gq^2(Q_{1,IR} + Q_{2,IR})J_1 J_2$

FOUR MODE MIXING

N. Taherian

One-dimensional pump probe: ambiguous assignment

Two dimensional spectroscopy to resolve ambiguity

Ô

67

Experiment vs theory: four waves and not three waves

N.Taherian, et al. (in preparation).

Squeezed Josephson Plasmons

 $g(Q_{1,IR} + Q_{2,IR})^2 J_1^2$

Coherent squeezed mode explains optical properties

with Marios Michael, Eugene Demler

Do these explain the optical and magnetic properties?

Squeezed current/phase oscillations

Rather than amplification of the superconducting currents $J_{,q_x}$

The underlying physcis may be connected to oscillations in the <u>"noise"</u> of the current $\langle J_{q_x}J_{-q_x} \rangle$

Time delay (ps)

Acknowledgements

N. Taherian

Alexander von Hoegen

Michael Först

Michael Fechner

Bernhard Keimer

Sebastian Fava

Giovanni De Vecchi

Michele Buzzi

Gregor Jotzu

Marios H. Michael

Eugene Demler

