Electrodynamics in insulators

We know that the constants € and u« in Maxwell’s equations can be modified
inside an ordinary insulator.

Particle physicists in the 1980s considered what happens if a 3D insulator
creates a new term ("‘axion electrodynamics”, Wilczek [1987)
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This term is a total derivative, unlike other magnetoelectric couplings.

The angle 0 is periodic and odd under T.
A T-invariant insulator can have two possible values: 0 or 7.

These correspond to “positive” and “negative” Dirac mass for the electron
(Jackiw-Rebbi, Callan-Harvey, ...)



Axion E&M, then and now
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This explains a number of properties of the 3D topological insulator when its
surfaces become gapped by breaking T-invariance:

Magnetoelectric effect: (Qi, Hughes, Zhang 2008)
applying B generates polarization P, applying E generates magnetization M)
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Dirac fermion QHE: graphene

The connection is that a single Dirac fermion contributes a half-integer QHE: this
is seen directly in graphene if we multiply by the extra fourfold degeneracy.
(Y. Zhang et al. Columbia data shown below)
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Topological response

|ldea of “axion electrodynamics in insulators”

there is a “topological” part of the magnetoelectric term
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that is measured by the orbital magnetoelectric polarizability
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and computed by integrating the “Chern-Simons form” of the Berry phase
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(Qi, Hughes, Zhang, 2008; Essin, JEM,Vanderbilt 2009)
This integral is quantized only in T-invariant insulators, but contributes in all insulators.



Orbital magnetoelectric polarizability

One mysterious fact about the previous result:
We indeed found the “Chern-Simons term” from the semiclassical approach.

But in that approach (Xiao et al.), it is not at all clear why this should be the only
magnetoelectric term from orbital motion of electrons.

More precisely: on general symmetry grounds, it is natural to decompose the tensor
into trace and traceless parts
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The traceless part can be further decomposed into symmetric and antisymmetric parts.

(The antisymmetric part is related to the “toroidal moment” in multiferroics;
cf. M. Fiebig and N. Spaldin)

But consideration of simple “molecular” models shows that even the trace part is not always
equal to the Chern-Simons formula...



Orbital magnetoelectric polarizability

Computing orbital dP/dB in a fully quantum treatment reveals that there are additional terms
in general. (Essin et al,, 1002.0290)

For dM/dE approach and numerical tests, see Malashevich, Souza, Coh,Vanderbilt, 1002.0300.
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The “ordinary part” indeed looks like a Kubo formula of electric and magnetic dipoles.

Not inconsistent with previous results:
in topological insulators, time-reversal means that only the Berry phase term survives.

There is an “ordinary part” and a “topological part”, which is scalar but is the only nonzero
part in Tls. But the two are not physically separable in general.
Both parts are nonzero in multiferroic materials.



Multiferroicity/magnetoelectricity

So we have a general theory for the orbital magnetoelectric response tensor in a crystal
(which essentially includes the orbital “toroidal moment”).

It is not a pure Berry phase in general, but it is in topological insulators.

Such magnetoelectric responses have been measured, e.g.,in Cr,03  ~~ 7'('/24 P
(Obukhov, Hehl, et al.).

Example of the ionic “competition”: BiFeO3

Can make a 2x2 table of “magnetoelectric mechanisms”:
(ignore nuclear magnetism)

electronic P ionic P
orbital M orbital M

electronic P, ionic P electronic P effects (left column) should be
spin M spin M faster and less fatiguing than magnetoelectric

effects requiring ionic motion.




Summary of recent experiments

|. There are now at least 3 strong topological insulators that have been seen
experimentally (BixSbi.x, Bi2Ses Bix Tes).

2. Their metallic surfaces exist in zero field and have the predicted form.
3.These are fairly common bulk 3D materials (and also *He B).

4.The temperature over which topological behavior is observed can extend up
to room temperature or so.

What’s left

What is the physical effect or response that defines a topological insulator
beyond single electrons!?

(What are they good for?)

Are there more profound consequences of geometry and topologiy?
Lecture 2: Many basic phenomena in matter

Lecture 3: New types of particles, with new types of statistics

Lecture 4:The future

But first we need a few basic notions from topology.



Qutline of lecture 2

| Intuitive picture of the Berry phase. What does it control in insulators and
metals?

Insulators: Polarization, IQHE, “topological insulators”, ...
Metals: New semiclassical term for electron motion.

2.What is the physical effect or response that defines a topological insulator
beyond single electrons! Quantized magnetoelectric effect

3.What do we learn about magnetoelectric effects more generally?
(“multiferroic” materials)

4. Introduction to topological field theories. Candidate “BF theory” for
topological insulators.



Berry phase review

Why do we write the phase in this form!?
Does it depend on the choice of reference wavefunctions!?

¢:7{A.dk, A= (| — iVl t)

If the ground state is non-degenerate, then the only freedom in
the choice of reference functions is a local phase:
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Under this change, the “Berry connection” A changes by a

gradient,
A— A+ Vix

just like the vector potential in electrodynamics.

So loop integrals of A will be gauge-invariant, F=VxA
as will the curl of A, which we call the “Berry curvature”.



How can we picture A?

qb:;[A-dk, A= (| — iVl t)

To get a physical interpretation of what A means, note that
if we consider a plane wave exp(i k r), then the vector potential
just gives the position r.

Now in a periodic crystal, the position can’t be uniquely defined,
but we nevertheless expect that A might reflect something to do
with the position of the wavefunction within the unit cell.

F=VxA



What about non-magnetic insulators!?

Electrical polarization: another simple Berry phase in solids
(Will eventually give another picture of topological insulators)

Sum the integral of A over bands: in one spatial dimension,

P=3 [ S tuula)] = 0y us(0);

Intuitive idea: think about the momentum-position commutation relation,

A = (ug| — iV ug) =~ (r)
There is an ambiguity of e per transverse unit cell, the “polarization quantum.”

Note: just as dA=F is a “closed form” and very useful to define Chern number,
in 4 dimensions there is a “second Chern form”

Fact from cohomology:
Odd dimensions have Chern-Simons forms that have a “quantum” ambiguity;
Even dimensions have Chern forms that are quantized.



But what does F do?

It is useful to get some intuition about what the Berry F means in simpler
physical systems first.

Its simplest consequence is that it modifies the semiclassical equations of
motion of a Bloch wavepacket:

dz® 1 0ey(k)
dt  h Ok,

dky
dt

- Fob(k)

a “magnetic field” in momentum space.

The anomalous velocity results from changes in the electron distribution within
the unit cell: the Berry phase is connected to the electron spatial location.
Example I: the intrinsic anomalous Hall effect in itinerant magnets

still no universal agreement on its existence

Example ll: helicity-dependent photocurrents in optically active materials
(Berry phases in nonlinear transport)



But what does F do?

Example |: the anomalous Hall effect in itinerant magnets

An electrical field E induces a transverse current through the anomalous
velocity if F is nonzero averaged over the ground state.

dz® 1 0ep (k)
dt h Ok,

A nonzero Hall current requires T breaking; microscopically this follows since
time-reversal symmetry implies

F (k) = —F*(-k).

- Foh (k) —-.

Smit’s objection: in steady state the electron distribution is stationary; why
should the anomalous velocity contribute at all?

(In a quantum treatment, the answer is as if dk/dt resulted only from the
macroscopic applied field, which is mostly consistent with experiment)



But what does F do?

To try to resolve the question of what the semiclassical

equation means: ky

Example ll: helicity-dependent photocurrents in optically

active materials

(Berry phases in nonlinear transport) ¢E Vo
— .—>
Vi dK/dt

In a T-symmetric material, the Berry phase is still important
at finite frequency. Consider circular polarization:

The small deviation in the electron distribution generated
by the electrical field gives an anomalous velocity
contribution that need not average to zero over the wave.

-



Smit vs. Luttinger

The resulting formula has 3 terms, of which one is “Smit-type” (i.e., nonzero even
with the full E) and two are “Luttinger-type”.
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(JEM and ). Orenstein, 2009). The full semiclassical transport theory of this effect
was given by Deyo, Golub, lvchenko, and Spivak (arXiv, 2009).

We believe that the circularly switched term actually explains a decade of
experiments on helicity-dependent photocurrents in GaAs quantum wells.

Bulk GaAs has too much symmetry to allow the effect; these quantum wells show
the effect because the well confinement breaks the symmetry
(“confinement-induced Berry phase”).



Confinement-induced Berry phases

Bulk GaAs has too much symmetry to
allow the effect; these quantum wells
show the effect because the well
confinement breaks the symmetry
(“confinement-induced Berry phase”).

Our numerics and envelope
approximation suggest

a magnitude of | nA for incident power
IW in a (110) well, which is consistent
with experiments by S. D. Ganichev et al.
(Regensburg).

Only one parameter of GaAs is needed
to describe F at the Brillouin zone origin:
symmetries force
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Electrodynamics in insulators

We know that the constants ¢ and u in Maxwell’s equations can be modified
inside an ordinary insulator.

Particle physicists in the 1980s considered what happens if a 3D insulator
creates a new term (‘axion electrodynamics”,Wilczek 1987)
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This term is a total derivative, unlike other magnetoelectric couplings.
It is also “topological” by power-counting.

The angle 0 is periodic and odd under T.

A T-invariant insulator can have two possible values: 0 or 7.



Axion E&M, then and now
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A T-invariant insulator can have two possible values: 0 or 7.

These two values correspond to ordinary and topological 3D insulators.
(Qi, Hughes, and Zhang, 2008)



Graphene QHE

The connection is that a single Dirac fermion contributes a half-integer QHE: this
is seen directly in graphene if we recall the extra fourfold degeneracy.
(Columbia data shown below)
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Axion E&M, then and now
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This explains a number of properties of the 3D topological insulator when its
surfaces become gapped by breaking T-invariance:

Magnetoelectric effect:
applying B generates polarization P, applying E generates magnetization M)
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Topological response

|ldea of “axion electrodynamics in insulators”

there is a “topological” part of the magnetoelectric term
fe? fe?
ALEM: —FE-B = GanYCSFa F5.
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that is measured by the orbital magnetoelectric polarizability
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and computed by integrating the “Chern-Simons form” of the Berry phase
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(Qi, Hughes, Zhang, 2008; Essin, JEM,Vanderbilt 2009)
This integral is quantized only in T-invariant insulators, but contributes in all insulators.



Topological response

Many-body definition: the Chern-Simons or second Chern formula does not directly
generalize. However, the quantity dP/dB does generalize:
a clue is that the “polarization quantum” combines nicely with the flux quantum.

4 )
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So dP/dB gives a bulk, many-body test for a topological insulator.

(Essin, JEM,Vanderbilt 2009)

5 contact resistance in 0D or 1D
— = Hall conductance quantum in 2D
magnetoelectric polarizability in 3D



Orbital magnetoelectric polarizability

One mysterious fact about the previous result:
We indeed found the “Chern-Simons term” from the semiclassical approach.

But in that approach, it is not at all clear why this should be the only magnetoelectric term
from orbital motion of electrons.

More precisely: on general symmetry grounds, it is natural to decompose the tensor
into trace and traceless parts
1
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The traceless part can be further decomposed into symmetric and antisymmetric parts.

(The antisymmetric part is related to the “toroidal moment” in multiferroics;
cf. M. Fiebig and N. Spaldin)

But consideration of simple “molecular” models shows that even the trace part is not always
equal to the Chern-Simons formula...



Orbital magnetoelectric polarizability

Computing orbital dP/dB in a fully quantum treatment reveals that there are additional terms
in general. (Essin et al,, 1002.0290)

For dM/dE approach and numerical tests, see Malashevich, Souza, Coh,Vanderbilt, 1002.0300.
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The “ordinary part” indeed looks like a Kubo formula of electric and magnetic dipoles.

Not inconsistent with previous results:
in topological insulators, time-reversal means that only the Berry phase term survives.

There is an “ordinary part” and a “topological part”, which is scalar but is the only nonzero
part in Tls. But the two are not physically separable in general.
Both parts are nonzero in multiferroic materials.



Magnetoelectric theory: a spinoff of Tls

This leads to a general theory for the orbital magnetoelectric response tensor in a crystal,
including contributions of all symmetries.

It is not a pure Berry phase in general, but it is in topological insulators.

Such magnetoelectric responses have been measured, e.g.,in Cr,03  ~~ 7'('/24
(Obukhov, Hehl, et al.). But this required gapped surfaces.

The magnetoelectric theory helps understand some related phases that are protected
by inversion or by the combination of time-reversal and translation:

“antiferromagnetic topological insulators”
(Mong, Essin, JEM, 2010)
possibly GdPtBi?




Magnetoelectric theory: a spinoff of Tls

This leads to a general theory for the orbital magnetoelectric response tensor in a crystal,
including contributions of all symmetries (Essin, Turner,Vanderbilt, JEM, 2010).

It is not a pure Berry phase in general, but it is in topological insulators.

Such magnetoelectric responses have been measured, e.g.,in Cr,03  ~~ 7'('/24 P
(Obukhov, Hehl, et al.).

Example of the ionic “competition”: BiFeO3

Can make a 2x2 table of “magnetoelectric mechanisms”:
(ignore nuclear magnetism)

electronic P ionic P
orbital M orbital M

electronic P, ionic P electronic P effects (left column) should be
spin M spin M faster and less fatiguing than magnetoelectric

effects requiring ionic motion.




Topological field theory of QHE

How can we describe the topological order in the quantum Hall effect?

Standard answer: Chern-Simons Landau-Ginzburg theory
(Girvin & MacDonald; Zhang, Hansson, and Kivelson; Read; ...)
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There is an “internal gauge field” a that couples to electromagnetic A.

Integrating out the internal gauge field a gives a Chern-Simons term for A, which just
describes a quantum Hall effect:
1
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There is a difference in principle between the topological field theory and the topological
term generated for electromagnetism; they are both Chern-Simons terms.



Topological field theory of QHE

What good is the Chern-Simons theory? (Wen)
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The bulk Chern-Simons term is not gauge-invariant on a manifold with boundary.

It predicts that a quantum Hall droplet must have a chiral boson theory at the edge:

k

For fractional quantum Hall states, the chiral boson is a “Luttinger liquid” with strongly non-
Ohmic tunneling behavior.

Experimentally this is seen qualitatively--perhaps not quantitatively.



Topological field theory of Tl

For the topological insulator, we know many properties.
Two standard defining properties in the 3D case:
|.When T is unbroken, there are gapless surfaces with an odd number of Dirac fermions.

2.When T is broken weakly, there is a half-integer quantum Hall effect at the surface, which is
equivalent to a bulk EM term
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Can we find an internal topological field theory that can capture the gapless surface and,
when gapped, capture the “axion electrodynamics” term for electromagnetism?

In the 2D case, a useful defining property is that a pi flux insertion in the bulk captures an
odd number of Kramers singlets (Fu-Kane, Essin-Moore, Ran-Vishwanath-Lee, Qi-Zhang)



Topological field theory of Tl

For the two-dimensional topological insulator, we know that an example of the state is
provided by a pair of integer quantum Hall states for “spin-up” and “spin-down”.

We can write the resulting combination of two Chern-Simons theories in a basis of two
fields a and b with different time-reversal properties:
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This is known as 2D “BF theory”, since the topological part couples the field b and the field
strength F of a. It is time-reversal even, unlike CS theory.

Its edge has two oppositely propagating boson modes. In the above we have written the
coupling to electromagnetism, and indeed we obtain the localized states around a pi flux.

The sources of a and b are charge density and spin density.

This theory was previously studied in CM in the context of superconductivity (Oganesyan,
Hansson, Sondhi 2004).



What about 3D?

Unlike Chern-Simons theory, BF theory exists in 3D and still describes time-reversal-
invariant systems.
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Now b is a two-form and there are two possible couplings to the EM field.

One is T-invariant and the other is not; we expect it to be generated by a T-breaking
perturbation at a surface, and indeed it is a boundary term.

The electromagnetic current contains both contributions from a and b.
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The two-form b contains information about electric and magnetic polarizations, which can be
viewed as a density of intrinsically line-like objects (think about field lines).



Facts about 3D BF

|.With the T-breaking perturbation, we obtain “axion electrodynamics”.
2.Without it, we obtain a bosonized representation of a 2D Fermi surface.
Sketch:

As in the FQHE, the bulk topological field theory is not gauge invariant on a manifold with
boundary.

It forces boundary degrees of freedom and a topological zero-energy kinetic term.

For BF theory in 3D, the boundary degrees of freedom are a scalar and vector boson,
coupled in a first-order Lagrangian. (Hansson-Oganesyan-Sondhi)

These are exactly the degrees of freedom required to represent canonically a single Dirac
fermion with time-reversal symmetry (Cho-Moore).

The velocity and filling of the Dirac fermion are set by nonuniversal surface physics, as in the
FQHE case.



Facts about 3D BF

|.With the T-breaking perturbation, we obtain “axion electrodynamics”.
2.Without it, we obtain a bosonized representation of a 2D Fermi surface.

3.We can reproduce the flow of charge through flux tubes (“wormhole effect”, Rosenbersg,
Guo, Franz, PRB 2010).

We can modify the bulk coefficient of BF theory and obtain fractional braiding statistics of
point-like and line-like objects. This seems to be different from the existing “parton”
constructions of 3D fractional topological insulators.

A challenge in connecting to experimental reality: at the |D edge of the FQHE, needed not
just the chiral boson but “vertex operators”

eioqu
A microscopic derivation of our bulk BF Lagrangian, and a generalization to other symmetry
classes, has recently been given by Chan, Ryu, Hughes, and Fradkin.



Topological field theory of Tls

When the edge is gapped, the magnetoelectric effect results. Ve can view the surface T-
breaking coupling as arising from a bulk polarization tensor (in addition to normal current

piece)
1 1 1 —
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What does it mean to “bosonize the surface state”? We can canonically represent a Dirac
fermion using the emergent surface fields (first-order scalar and vector bosons):

~
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a(n) — / aOA(y’ n) A difference from the FQHE case: there the surface details set
_Oog the velocity, but the chemical potential is essentially irrelevant;
~ ~ ~ here the surface still determines the velocity and chemical
B(n) — aOB (y, n) . potential, and both matter for the low-energy theory.
— 00



Last topic:

From topological insulators to
3D “semi-topological semi-metals” (Dirac and Weyl)

Motivation:

Allowing the possibility of crystalline symmetries
greatly increases the variety of possible topological
band structures (both metals and insulators).

Some of these have been found recently:

topological crystalline insulators (proposed by L. Fu)
3D Dirac semimetals

(3 experimental papers; see CM Journal Club commentary, JEM)



Novel states predicted with tuning of correlations

Iridates are weak Mott insulators
(intermediate coupling)

Ut
Mott insulator
B all scales
comparable!
44 -
I materials i TIs, SO-semimetals
: At

Correlations can be tuned by a variety of methods, such as chemical
substitution and lattice strain due to substrate mismatch.

Increasing correlation

Slide from LBNL Quantum Materials Program



Quantum Materials Research Highlight
Theoretical predictions: new phases of topological matter

Scientific Achievement

% Prediction of Weyl semimetal, a 3D
version of graphene, and possible
realization in pyrochlore iridates.

% Arises in materials with strong-spin
orbit coupling that break either time-
reversal or inversion symmetry. The
Dirac node is topologically protected.

Significance
Leads to exotic ‘Fermi arc’ surface states.
A Topological phase beyond topological
insulators.

Publications

X. Wan, A. M. Turner, Ashvin Vishwanath, and S.
Y. Savrasov, Phys. Rev. B 83, 205101 (2011).

X. Wan, , Ashvin Vishwanath and S. Y. Savrasov,
Phys. Rev. Lett. 108 (2012).

P. Hosur, S. Parameswaran , Ashvin Vishwanath,
Phys. Rev. Lett. 108 046602 (2012).




Semi-topological semi-metals in 3D
created by magnetic backgrounds

Graphene (2D) has a 2-band Dirac point (1947)
H = kyo, + kyo,
Stabilized by symmetries of honeycomb lattice.

Unstable to adding 3rd Pauli matrix (opens gap).

Two versions in 3D: 2-band Weyl point (Herring, 1937)
H = kyop + kyoy + k,o,.

Requires breaking of time-reversal or inversion symmetry

If not, combination of 2 Weyl points = 4-band Dirac point,
which can be stabilized by crystalline symmetries.

Just seen via ARPES in Cd3As; (Princeton), Na3Bi (Oxford).



3D Weyl and Dirac semimetals

|.The 3D Weyl semimetal is quite stable as long as crystal
momentum is well-defined (there is a topological “Chern number”
around the Weyl point).

2. It might appear in pyrochlore iridates (DFT+U says so).

3. It has an unusual “Fermi arc” surface state connecting the VWeyl
points.

Problem:We don’t know whether the actual magnetic background in experiment is
the right one for this phase, or even whether there is a single background or a spin-
ice-like fluctuating one.

DFT+U is a useful technique, especially if some information about the magnetic
structure is provided by experiment.



Yet another spin liquid in iridates

A solvable non-Abelian spin liquid Hamiltonian written down by Kitaev
on the honeycomb lattice, with strong spin-orbital coupling,

H = Z 0;0; + Z o075 + Z 0;07.

(17)|lv1 (17 ]|V (27)||vs

may actually appear as the effective Hamiltonian of honeycomb iridates
(Jackeli and Khaliullin, PRL 08).

Sodium iridate experiment: maybe not (S.K. Choi et al., 2012):

We report inelastic neutron scattering measurements on NasIrO3, a candidate for the Kitaev spin
model on the honeycomb lattice. We observe spin-wave excitations below 5 meV with a dispersion
that can be accounted for by including substantial further-neighbor exchanges that stabilize zig-zag
magnetic order. The onset of long-range magnetic order below ITn = 15.3 K 1s confirmed via the
observation of oscillations in zero-field muon-spin rotation experiments. Combining single-crystal
diffraction and density functional calculations we propose a revised crystal structure model with
significant departures from the ideal 90° Ir-O-Ir bonds required for dominant Kitaev exchange.
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