
Electrodynamics in insulators

We know that the constants ε and μ in Maxwell’s equations can be modified 
inside an ordinary insulator.	


!
Particle physicists in the 1980s considered what happens if a 3D insulator 
creates a new term (“axion electrodynamics”, Wilczek 1987)	


!
!
!
!
!
This term is a total derivative, unlike other magnetoelectric couplings.	


!
The angle θ is periodic and odd under T.	


!
A T-invariant insulator can have two possible values: 0 or π.	


!
These correspond to “positive” and “negative” Dirac mass for the electron	


(Jackiw-Rebbi, Callan-Harvey, ...)	


!
!
!
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Axion E&M, then and now

This explains a number of properties of the 3D topological insulator when its 
surfaces become gapped by breaking T-invariance:	


!
Magnetoelectric effect: (Qi, Hughes, Zhang 2008)	


applying B generates polarization P, applying E generates magnetization M)	


!
!
!
!
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Dirac fermion QHE: graphene
The connection is that a single Dirac fermion contributes a half-integer QHE: this 

is seen directly in graphene if we multiply by the extra fourfold degeneracy. 	


(Y. Zhang et al. Columbia data shown below)
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Interference-induced colour shifts, cross-correlated with an atomic
force microscopy profile, allow us to identify the number of depos-
ited graphene layers from optical images of the samples (Supplemen-
tary Information). After a suitable graphene sample has been
selected, electron beam lithography followed by thermally evapor-
ated Au/Cr (30 nm and 5 nm, respectively) defines multiple electro-
des for transport measurement (Fig. 1a, right inset).With the use of a
Hall-bar-type electrode configuration, the magnetoresistance Rxx

and Hall resistance Rxy are measured. Applying a gate voltage, Vg,
to the Si substrate controls the charge density in the graphene
samples.
Figure 1a shows the gate modulation of Rxx at zero magnetic field

in a typical graphene device whose lateral size is,3 mm.Whereas Rxx

remains in the,100-Q range at high carrier density, a sharp peak at
,4 kQ is observed at V g < 0. Although different samples show
slightly different peak values and peak positions, similar behaviours
were observed in three other graphene samples that we measured.
The existence of this sharp peak is consistent with the reduced carrier
density as EF approaches the Dirac point of grapheme, at which the
density of states vanishes. Thus, the gate voltage corresponding to the
charge-neutral Dirac point, VDirac, can be determined from this peak
position. A separate Hall measurement provides a measure for the
sheet carrier density, n s, and for the mobility, m, of the sample, as
shown in Fig. 1b, assuming a simple Drude model. The sign of n s

changes at Vg ¼ VDirac, indicating that EF does indeed cross the
charge-neutral point. Mobilities are higher than 104 cm2V21 s21 for
the entire gate voltage range, considerably exceeding the quality of
graphene samples studied previously8,9.
The exceptionally high-mobility graphene samples allow us to

investigate transport phenomena in the extreme magnetic quantum
limit, such as the QHE. Figure 2a showsRxy and Rxx for the sample of
Fig. 1 as a function of magnetic field B at a fixed gate voltage Vg .
VDirac. The overall positive Rxy indicates that the contribution is
mainly from electrons. At high magnetic field, Rxy(B) exhibits
plateaux and Rxx is vanishing, which are the hallmark of the
QHE. At least two well-defined plateaux with values (2e2/h)21 and
(6e2/h)21, followed by a developing (10e2/h)21 plateau, are observed
before the QHE features transform into Shubnikov de Haas (SdH)
oscillations at lower magnetic field. The quantization of Rxy for these
first two plateaux is better than 1 part in 104, precise within the
instrumental uncertainty. We observed the equivalent QHE features
for holes with negative Rxy values (Fig. 2a, inset). Alternatively, we
can probe the QHE in both electrons and holes by fixing themagnetic
field and changing Vg across the Dirac point. In this case, as Vg

increases, first holes (Vg , VDirac) and later electrons (Vg . VDirac)
fill successive Landau levels and exhibit the QHE. This yields an
antisymmetric (symmetric) pattern of Rxy (Rxx) in Fig. 2b, with Rxy

quantization in accordance with

R21
xy ¼^gsðnþ 1=2Þe2=h ð2Þ

where n is a non-negative integer and ^ stands for electrons and
holes, respectively. This quantization condition can be translated to
the quantized filling factor v ¼ ^g s(n þ 1/2) in the usual QHE
language. In addition, there is an oscillatory structure developed
near the Dirac point. Although this structure is reproducible for any
given sample, its shape varies from device to device, suggesting
potentially mesoscopic effects depending on the details of the sample
geometry13. Although the QHE has been observed in many 2D

Figure 2 | Quantized magnetoresistance and Hall resistance of a graphene
device. a, Hall resistance (black) and magnetoresistance (red) measured in
the device in Fig. 1 at T ¼ 30mK and Vg ¼ 15V. The vertical arrows and the
numbers on them indicate the values of B and the corresponding filling
factor n of the quantumHall states. The horizontal lines correspond to h/e2n
values. The QHE in the electron gas is shown by at least two quantized
plateaux in Rxy, with vanishing Rxx in the corresponding magnetic field
regime. The inset shows the QHE for a hole gas at Vg ¼ 24V, measured at
1.6 K. The quantized plateau for filling factor n ¼ 2 is well defined, and the
second and third plateaux with n ¼ 6 and n ¼ 10 are also resolved. b, Hall

resistance (black) and magnetoresistance (orange) as a function of gate
voltage at fixed magnetic field B ¼ 9T, measured at 1.6K. The same
convention as in a is used here. The upper inset shows a detailed view of
high-filling-factor plateaux measured at 30mK. c, A schematic diagram of
the Landau level density of states (DOS) and corresponding quantum Hall
conductance (jxy) as a function of energy. Note that, in the quantum Hall
states, jxy ¼ 2Rxy

21. The LL index n is shown next to the DOS peak. In our
experiment the Fermi energy EF can be adjusted by the gate voltage, andRxy

21

changes by an amount g se
2/h as EF crosses a LL.
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Topological response
Idea of “axion electrodynamics in insulators”	


!
there is a “topological” part of the magnetoelectric term	


!
!
!
!
that is measured by the orbital magnetoelectric polarizability	


!
!
!
!
!
and computed by integrating the “Chern-Simons form” of the Berry phase	


!
!
!
!
(Qi, Hughes, Zhang, 2008; Essin, JEM, Vanderbilt 2009)	


This integral is quantized only in T-invariant insulators, but contributes in all insulators.	


!

�LEM =
⇥e2

2⇤h
E · B =

⇥e2

16⇤h
��⇥⇤⌅F�⇥F⇤⌅.

�
e2

2⇥h
=

⇤M

⇤E
=

⇤

⇤E

⇤

⇤B
H =

⇤P

⇤B

(2)✓ = � 1
4⇡

Z

BZ
d3k ✏ijk Tr[Ai@jAk � i

2
3
AiAjAk]



Orbital magnetoelectric polarizability
One mysterious fact about the previous result:	


!
We indeed found the “Chern-Simons term” from the semiclassical approach.	


!
But in that approach (Xiao et al.), it is not at all clear why this should be the only 
magnetoelectric term from orbital motion of electrons.	


!
More precisely: on general symmetry grounds, it is natural to decompose the tensor	


into trace and traceless parts	


!
!
!
!
!
The traceless part can be further decomposed into symmetric and antisymmetric parts.  
(The antisymmetric part is related to the “toroidal moment” in multiferroics;	


cf. M. Fiebig and N. Spaldin)	


!
But consideration of simple “molecular” models shows that even the trace part is not always 
equal to the Chern-Simons formula...
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Orbital magnetoelectric polarizability
Computing orbital dP/dB in a fully quantum treatment reveals that there are additional terms 
in general.  (Essin et al., 1002.0290)	


For dM/dE approach and numerical tests, see Malashevich, Souza, Coh, Vanderbilt, 1002.0300. 	


!
!
!
!
!
!
!
!
!
The “ordinary part” indeed looks like a Kubo formula of electric and magnetic dipoles.	


!
Not inconsistent with previous results:	


in topological insulators, time-reversal means that only the Berry phase term survives.	


!
There is an “ordinary part” and a “topological part”, which is scalar but is the only nonzero 
part in TIs.  But the two are not physically separable in general.	


Both parts are nonzero in multiferroic materials.	


!
!
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Multiferroicity/magnetoelectricity
So we have a general theory for the orbital magnetoelectric response tensor in a crystal 
(which essentially includes the orbital “toroidal moment”).	


!
It is not a pure Berry phase in general, but it is in topological insulators.	


!
Such magnetoelectric responses have been measured, e.g., in Cr2O3 	


!
!
!
!
!

(Obukhov, Hehl, et al.).	


!
Example of the ionic “competition”: BiFeO3	


!
Can make a 2x2 table of “magnetoelectric mechanisms”:	


(ignore nuclear magnetism)	


!

✓ ⇡ ⇡/24 P

electronic P, 
orbital M

ionic P	


orbital M

electronic P, 
spin M

ionic P	


spin M

electronic P effects (left column) should be 
faster and less fatiguing than magnetoelectric 
effects requiring ionic motion.



Summary of recent experiments

1. There are now at least 3 strong topological insulators that have been seen 
experimentally (BixSb1-x, Bi2Se3, Bi2Te3).	


!
2. Their metallic surfaces exist in zero field and have the predicted form.	


!
3. These are fairly common bulk 3D materials (and also 3He B).	


!
4. The temperature over which topological behavior is observed can extend up 
to room temperature or so.	


!
!
What is the physical effect or response that defines a topological insulator 
beyond single electrons?	


!
(What are they good for?)	


!
Are there more profound consequences of geometry and topologiy?	


Lecture 2: Many basic phenomena in matter	


Lecture 3: New types of particles, with new types of statistics	


Lecture 4: The future	


!
But first we need a few basic notions from topology.

What’s left



Outline of lecture 2

1. Intuitive picture of the Berry phase.  What does it control in insulators and 
metals?	


!
Insulators: Polarization, IQHE, “topological insulators”, ...	


!
Metals: New semiclassical term for electron motion.  	


!
2. What is the physical effect or response that defines a topological insulator 
beyond single electrons?  Quantized magnetoelectric effect	


!
3. What do we learn about magnetoelectric effects more generally?
(“multiferroic” materials)	


!
4. Introduction to topological field theories.  Candidate “BF theory” for 
topological insulators.



Why do we write the phase in this form?	


Does it depend on the choice of reference wavefunctions?	


!
!
!
!
If the ground state is non-degenerate, then the only freedom in 
the choice of reference functions is a local phase:	


!
!
!
Under this change, the “Berry connection” A changes by a	


gradient,	


!
!
just like the vector potential in electrodynamics.	


!
So loop integrals of A will be gauge-invariant,	


as will the curl of A, which we call the “Berry curvature”.	


!
!
!
!
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To get a physical interpretation of what A means, note that	


if we consider a plane wave exp(i k r), then the vector potential 
just gives the position r.	


!
Now in a periodic crystal, the position can’t be uniquely defined, 
but we nevertheless expect that A might reflect something to do 
with the position of the wavefunction within the unit cell.	


!
!
!
!
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What about non-magnetic insulators?
Electrical polarization: another simple Berry phase in solids	


(Will eventually give another picture of topological insulators)	


!
Sum the integral of A over bands: in one spatial dimension,	


!
!
!
!
!
Intuitive idea: think about the momentum-position commutation relation,	


!
!
!
There is an ambiguity of e per transverse unit cell, the “polarization quantum.”	


!
Note: just as dA=F is a “closed form” and very useful to define Chern number,	


in 4 dimensions there is a “second Chern form”	


!
Fact from cohomology:	


Odd dimensions have Chern-Simons forms that have a “quantum” ambiguity;	


Even dimensions have Chern forms that are quantized.
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But what does F do?
It is useful to get some intuition about what the Berry F means in simpler 
physical systems first.	


!
Its simplest consequence is that it modifies the semiclassical equations of 
motion of a Bloch wavepacket:	


!
!
!
!
!
a “magnetic field” in momentum space.	


!
The anomalous velocity results from changes in the electron distribution within 
the unit cell: the Berry phase is connected to the electron spatial location.	


!
!
Example I: the intrinsic anomalous Hall effect in itinerant magnets	


still no universal agreement on its existence	


!
Example II: helicity-dependent photocurrents in optically active materials	


(Berry phases in nonlinear transport)	


!
!
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But what does F do?
Example I: the anomalous Hall effect in itinerant magnets	


!
An electrical field E induces a transverse current through the anomalous 
velocity if F is nonzero averaged over the ground state.	


!
!
!
!
!
!
A nonzero Hall current requires T breaking; microscopically this follows since 
time-reversal symmetry implies	


!
!
!
!
Smit’s objection: in steady state the electron distribution is stationary; why 
should the anomalous velocity contribute at all?	


!
(In a quantum treatment, the answer is as if dk/dt resulted only from the 
macroscopic applied field, which is mostly consistent with experiment)	


!
!
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But what does F do?
To try to resolve the question of what the semiclassical 
equation means:	


!
Example II: helicity-dependent photocurrents in optically 
active materials	


(Berry phases in nonlinear transport)	


!
!
!
!
In a T-symmetric material, the Berry phase is still important	


at finite frequency.  Consider circular polarization:	


!
The small deviation in the electron distribution generated 
by the electrical field gives an anomalous velocity 
contribution that need not average to zero over the wave.	


!
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Smit vs. Luttinger
The resulting formula has 3 terms, of which one is “Smit-type” (i.e., nonzero even 
with the full E) and two are “Luttinger-type”.	


!
!
!
!
!
!
!
!
!
(JEM and J. Orenstein, 2009).  The full semiclassical transport theory of this effect 
was given by Deyo, Golub, Ivchenko, and Spivak (arXiv, 2009).	


!
We believe that the circularly switched term actually explains a decade of 
experiments on helicity-dependent photocurrents in GaAs quantum wells.	


!
Bulk GaAs has too much symmetry to allow the effect; these quantum wells show 
the effect because the well confinement breaks the symmetry	


(“confinement-induced Berry phase”).

� =
@F

@k
x

j

dc

=
�ne3

2~2

1
1/⌧2 + !2

h
i!(E

x

E⇤
y

� E
y

E⇤
x

)x̂

+1/⌧(E
x

E⇤
y

+ E
y

E⇤
x

)x̂ + |E
x

|2ŷ
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Confinement-induced Berry phases

Bulk GaAs has too much symmetry to 
allow the effect; these quantum wells 
show the effect because the well 
confinement breaks the symmetry	


(“confinement-induced Berry phase”).	


!
Our numerics and envelope 
approximation suggest	


a magnitude of 1 nA for incident power 
1W in a (110) well, which is consistent 
with experiments by S. D. Ganichev et al. 
(Regensburg).	


!
Only one parameter of GaAs is needed 
to describe F at the Brillouin zone origin:	
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Electrodynamics in insulators

We know that the constants ε and μ in Maxwell’s equations can be modified 
inside an ordinary insulator.	


!
Particle physicists in the 1980s considered what happens if a 3D insulator 
creates a new term (“axion electrodynamics”, Wilczek 1987)	


!
!
!
!
!
This term is a total derivative, unlike other magnetoelectric couplings.	


It is also “topological” by power-counting.	


!
The angle θ is periodic and odd under T.	


!
A T-invariant insulator can have two possible values: 0 or π.	


!
!
!
!
!
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Axion E&M, then and now

A T-invariant insulator can have two possible values: 0 or π.	


!
These two values correspond to ordinary and topological 3D insulators.	


(Qi, Hughes, and Zhang, 2008)	


!
!
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Graphene QHE
The connection is that a single Dirac fermion contributes a half-integer QHE: this 

is seen directly in graphene if we recall the extra fourfold degeneracy. 	


(Columbia data shown below)

© 2005 Nature Publishing Group 

 

Interference-induced colour shifts, cross-correlated with an atomic
force microscopy profile, allow us to identify the number of depos-
ited graphene layers from optical images of the samples (Supplemen-
tary Information). After a suitable graphene sample has been
selected, electron beam lithography followed by thermally evapor-
ated Au/Cr (30 nm and 5 nm, respectively) defines multiple electro-
des for transport measurement (Fig. 1a, right inset).With the use of a
Hall-bar-type electrode configuration, the magnetoresistance Rxx

and Hall resistance Rxy are measured. Applying a gate voltage, Vg,
to the Si substrate controls the charge density in the graphene
samples.
Figure 1a shows the gate modulation of Rxx at zero magnetic field

in a typical graphene device whose lateral size is,3 mm.Whereas Rxx

remains in the,100-Q range at high carrier density, a sharp peak at
,4 kQ is observed at V g < 0. Although different samples show
slightly different peak values and peak positions, similar behaviours
were observed in three other graphene samples that we measured.
The existence of this sharp peak is consistent with the reduced carrier
density as EF approaches the Dirac point of grapheme, at which the
density of states vanishes. Thus, the gate voltage corresponding to the
charge-neutral Dirac point, VDirac, can be determined from this peak
position. A separate Hall measurement provides a measure for the
sheet carrier density, n s, and for the mobility, m, of the sample, as
shown in Fig. 1b, assuming a simple Drude model. The sign of n s

changes at Vg ¼ VDirac, indicating that EF does indeed cross the
charge-neutral point. Mobilities are higher than 104 cm2V21 s21 for
the entire gate voltage range, considerably exceeding the quality of
graphene samples studied previously8,9.
The exceptionally high-mobility graphene samples allow us to

investigate transport phenomena in the extreme magnetic quantum
limit, such as the QHE. Figure 2a showsRxy and Rxx for the sample of
Fig. 1 as a function of magnetic field B at a fixed gate voltage Vg .
VDirac. The overall positive Rxy indicates that the contribution is
mainly from electrons. At high magnetic field, Rxy(B) exhibits
plateaux and Rxx is vanishing, which are the hallmark of the
QHE. At least two well-defined plateaux with values (2e2/h)21 and
(6e2/h)21, followed by a developing (10e2/h)21 plateau, are observed
before the QHE features transform into Shubnikov de Haas (SdH)
oscillations at lower magnetic field. The quantization of Rxy for these
first two plateaux is better than 1 part in 104, precise within the
instrumental uncertainty. We observed the equivalent QHE features
for holes with negative Rxy values (Fig. 2a, inset). Alternatively, we
can probe the QHE in both electrons and holes by fixing themagnetic
field and changing Vg across the Dirac point. In this case, as Vg

increases, first holes (Vg , VDirac) and later electrons (Vg . VDirac)
fill successive Landau levels and exhibit the QHE. This yields an
antisymmetric (symmetric) pattern of Rxy (Rxx) in Fig. 2b, with Rxy

quantization in accordance with

R21
xy ¼^gsðnþ 1=2Þe2=h ð2Þ

where n is a non-negative integer and ^ stands for electrons and
holes, respectively. This quantization condition can be translated to
the quantized filling factor v ¼ ^g s(n þ 1/2) in the usual QHE
language. In addition, there is an oscillatory structure developed
near the Dirac point. Although this structure is reproducible for any
given sample, its shape varies from device to device, suggesting
potentially mesoscopic effects depending on the details of the sample
geometry13. Although the QHE has been observed in many 2D

Figure 2 | Quantized magnetoresistance and Hall resistance of a graphene
device. a, Hall resistance (black) and magnetoresistance (red) measured in
the device in Fig. 1 at T ¼ 30mK and Vg ¼ 15V. The vertical arrows and the
numbers on them indicate the values of B and the corresponding filling
factor n of the quantumHall states. The horizontal lines correspond to h/e2n
values. The QHE in the electron gas is shown by at least two quantized
plateaux in Rxy, with vanishing Rxx in the corresponding magnetic field
regime. The inset shows the QHE for a hole gas at Vg ¼ 24V, measured at
1.6 K. The quantized plateau for filling factor n ¼ 2 is well defined, and the
second and third plateaux with n ¼ 6 and n ¼ 10 are also resolved. b, Hall

resistance (black) and magnetoresistance (orange) as a function of gate
voltage at fixed magnetic field B ¼ 9T, measured at 1.6K. The same
convention as in a is used here. The upper inset shows a detailed view of
high-filling-factor plateaux measured at 30mK. c, A schematic diagram of
the Landau level density of states (DOS) and corresponding quantum Hall
conductance (jxy) as a function of energy. Note that, in the quantum Hall
states, jxy ¼ 2Rxy

21. The LL index n is shown next to the DOS peak. In our
experiment the Fermi energy EF can be adjusted by the gate voltage, andRxy

21

changes by an amount g se
2/h as EF crosses a LL.
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Axion E&M, then and now

This explains a number of properties of the 3D topological insulator when its 
surfaces become gapped by breaking T-invariance:	


!
Magnetoelectric effect:	


applying B generates polarization P, applying E generates magnetization M)	


!
!
!
!
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Topological response
Idea of “axion electrodynamics in insulators”	


!
there is a “topological” part of the magnetoelectric term	


!
!
!
!
that is measured by the orbital magnetoelectric polarizability	


!
!
!
!
!
and computed by integrating the “Chern-Simons form” of the Berry phase	


!
!
!
!
(Qi, Hughes, Zhang, 2008; Essin, JEM, Vanderbilt 2009)	


This integral is quantized only in T-invariant insulators, but contributes in all insulators.	


!
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Topological response
Many-body definition: the Chern-Simons or second Chern formula does not directly 
generalize.  However, the quantity dP/dB does generalize:	


a clue is that the “polarization quantum” combines nicely with the flux quantum.	


!
!
!
!
!
So dP/dB gives a bulk, many-body test for a topological insulator.	


!
(Essin, JEM, Vanderbilt 2009)	


!

�P

B0
=

e/⇥
h/e⇥

= e2/h.

e2

h

= contact resistance in 0D or 1D	


= Hall conductance quantum in 2D	


= magnetoelectric polarizability in 3D



Orbital magnetoelectric polarizability
One mysterious fact about the previous result:	


!
We indeed found the “Chern-Simons term” from the semiclassical approach.	


!
But in that approach, it is not at all clear why this should be the only magnetoelectric term 
from orbital motion of electrons.	


!
More precisely: on general symmetry grounds, it is natural to decompose the tensor	


into trace and traceless parts	


!
!
!
!
!
The traceless part can be further decomposed into symmetric and antisymmetric parts.  
(The antisymmetric part is related to the “toroidal moment” in multiferroics;	


cf. M. Fiebig and N. Spaldin)	


!
But consideration of simple “molecular” models shows that even the trace part is not always 
equal to the Chern-Simons formula...
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Orbital magnetoelectric polarizability
Computing orbital dP/dB in a fully quantum treatment reveals that there are additional terms 
in general.  (Essin et al., 1002.0290)	


For dM/dE approach and numerical tests, see Malashevich, Souza, Coh, Vanderbilt, 1002.0300. 	


!
!
!
!
!
!
!
!
!
The “ordinary part” indeed looks like a Kubo formula of electric and magnetic dipoles.	


!
Not inconsistent with previous results:	


in topological insulators, time-reversal means that only the Berry phase term survives.	


!
There is an “ordinary part” and a “topological part”, which is scalar but is the only nonzero 
part in TIs.  But the two are not physically separable in general.	


Both parts are nonzero in multiferroic materials.	


!
!
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Magnetoelectric theory: a spinoff of TIs

This leads to a general theory for the orbital magnetoelectric response tensor in a crystal,	


including contributions of all symmetries.	


!
It is not a pure Berry phase in general, but it is in topological insulators.	


!
Such magnetoelectric responses have been measured, e.g., in Cr2O3 	


!
!
!
!
!

(Obukhov, Hehl, et al.).  But this required gapped surfaces.	


!
The magnetoelectric theory helps understand some related phases that are protected 
by inversion or by the combination of time-reversal and translation:	


!

✓ ⇡ ⇡/24

“antiferromagnetic topological insulators”	


(Mong, Essin, JEM, 2010)	


possibly GdPtBi?



Magnetoelectric theory: a spinoff of TIs

This leads to a general theory for the orbital magnetoelectric response tensor in a crystal,	


including contributions of all symmetries (Essin, Turner, Vanderbilt, JEM, 2010).	


!
It is not a pure Berry phase in general, but it is in topological insulators.	


!
Such magnetoelectric responses have been measured, e.g., in Cr2O3 	


!
!
!
!
!

(Obukhov, Hehl, et al.).	


!
Example of the ionic “competition”: BiFeO3	


!
Can make a 2x2 table of “magnetoelectric mechanisms”:	


(ignore nuclear magnetism)	


!

✓ ⇡ ⇡/24 P

electronic P, 
orbital M

ionic P	


orbital M

electronic P, 
spin M

ionic P	


spin M

electronic P effects (left column) should be 
faster and less fatiguing than magnetoelectric 
effects requiring ionic motion.



Topological field theory of QHE
How can we describe the topological order in the quantum Hall effect?	


!
Standard answer: Chern-Simons Landau-Ginzburg theory	


(Girvin & MacDonald; Zhang, Hansson, and Kivelson; Read; ...)	


!
!
!
!
!
There is an “internal gauge field” a that couples to electromagnetic A.	


!
Integrating out the internal gauge field a gives a Chern-Simons term for A, which just 
describes a quantum Hall effect:	


!
!
!
!
There is a difference in principle between the topological field theory and the topological 
term generated for electromagnetism; they are both Chern-Simons terms.
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Topological field theory of QHE
What good is the Chern-Simons theory? (Wen)	


!
!
!
!
!
The bulk Chern-Simons term is not gauge-invariant on a manifold with boundary.	


!
It predicts that a quantum Hall droplet must have a chiral boson theory at the edge:	


!
!
!
!
!
For fractional quantum Hall states, the chiral boson is a “Luttinger liquid” with strongly non-
Ohmic tunneling behavior.	


!
Experimentally this is seen qualitatively--perhaps not quantitatively.
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Topological field theory of TI
For the topological insulator, we know many properties.	


!
Two standard defining properties in the 3D case:	


!
1. When T is unbroken, there are gapless surfaces with an odd number of Dirac fermions.	


!
2. When T is broken weakly, there is a half-integer quantum Hall effect at the surface, which is 
equivalent to a bulk EM term	


!
!
!
!
!
Can we find an internal topological field theory that can capture the gapless surface and, 
when gapped, capture the “axion electrodynamics” term for electromagnetism?	


!
In the 2D case, a useful defining property is that a pi flux insertion in the bulk captures an 
odd number of Kramers singlets (Fu-Kane, Essin-Moore, Ran-Vishwanath-Lee, Qi-Zhang)
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Topological field theory of TI
For the two-dimensional topological insulator, we know that an example of the state is 
provided by a pair of integer quantum Hall states for “spin-up” and “spin-down”.	


!
We can write the resulting combination of two Chern-Simons theories in a basis of two 
fields a and b with different time-reversal properties:	


!
!
!
!
This is known as 2D “BF theory”, since the topological part couples the field b and the field 
strength F of a.  It is time-reversal even, unlike CS theory.	


!
Its edge has two oppositely propagating boson modes.  In the above we have written the 
coupling to electromagnetism, and indeed we obtain the localized states around a pi flux.	


!
The sources of a and b are charge density and spin density.	


!
!
This theory was previously studied in CM in the context of superconductivity (Oganesyan, 
Hansson, Sondhi 2004).
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What about 3D?
Unlike Chern-Simons theory, BF theory exists in 3D and still describes time-reversal-
invariant systems.	


!
!
!
!
Now b is a two-form and there are two possible couplings to the EM field.	


!
One is T-invariant and the other is not; we expect it to be generated by a T-breaking 
perturbation at a surface, and indeed it is a boundary term.	


!
The electromagnetic current contains both contributions from a and b.	


!
!
!
!
!
The two-form b contains information about electric and magnetic polarizations, which can be 
viewed as a density of intrinsically line-like objects (think about field lines).
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Facts about 3D BF
1. With the T-breaking perturbation, we obtain “axion electrodynamics”.	


!
2. Without it, we obtain a bosonized representation of a 2D Fermi surface.	


!
Sketch:	


!
As in the FQHE, the bulk topological field theory is not gauge invariant on a manifold with 
boundary.	


!
It forces boundary degrees of freedom and a topological zero-energy kinetic term.	


!
For BF theory in 3D, the boundary degrees of freedom are a scalar and vector boson, 
coupled in a first-order Lagrangian.  (Hansson-Oganesyan-Sondhi)	


!
These are exactly the degrees of freedom required to represent canonically a single Dirac 
fermion with time-reversal symmetry (Cho-Moore).	


!
The velocity and filling of the Dirac fermion are set by nonuniversal surface physics, as in the 
FQHE case.



Facts about 3D BF
1. With the T-breaking perturbation, we obtain “axion electrodynamics”.	


!
2. Without it, we obtain a bosonized representation of a 2D Fermi surface.	


!
3. We can reproduce the flow of charge through flux tubes (“wormhole effect”, Rosenberg, 
Guo, Franz, PRB 2010).	


!
!
We can modify the bulk coefficient of BF theory and obtain fractional braiding statistics of 
point-like and line-like objects.  This seems to be different from the existing “parton” 
constructions of 3D fractional topological insulators.	


!
A challenge in connecting to experimental reality: at the 1D edge of the FQHE, needed not 
just the chiral boson but “vertex operators” 	


!
!
A microscopic derivation of our bulk BF Lagrangian, and a generalization to other symmetry 
classes, has recently been given by Chan, Ryu, Hughes, and Fradkin.
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Topological field theory of TIs
!
When the edge is gapped, the magnetoelectric effect results.  We can view the surface T-
breaking coupling as arising from a bulk polarization tensor (in addition to normal current 
piece)	


!
!
!
!
What does it mean to “bosonize the surface state”?  We can canonically represent a Dirac 
fermion using the emergent surface fields (first-order scalar and vector bosons):	


!
!
!
!
!
!
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!
!
A difference from the FQHE case: there the surface details set 
the velocity, but the chemical potential is essentially irrelevant; 
here the surface still determines the velocity and chemical 
potential, and both matter for the low-energy theory.



Last topic:
From topological insulators to	



3D “semi-topological semi-metals” (Dirac and Weyl)

Motivation:	


Allowing the possibility of crystalline symmetries 
greatly increases the variety of possible topological 
band structures (both metals and insulators).	


!
Some of these have been found recently:	


topological crystalline insulators (proposed by L. Fu)	


3D Dirac semimetals	


(3 experimental papers; see CM Journal Club commentary, JEM)	





Novel&states&predicted&with&tuning&of&correla5ons&

Weyl&

Mo9&insulator&

TI&

Axion&Ins.&

Correla'ons*can*be*tuned*by*a*variety*of*methods,*such*as*chemical*
subs'tu'on*and*la7ce*strain*due*to*substrate*mismatch.*

Increasing&correla5on&Iridates*are*weak*Mo=*insulators*
(intermediate*coupling)*
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Theore&cal*predic&ons:*new*phases*of*topological*ma6er*

Scientific Achievement 
!   Prediction of Weyl semimetal, a 3D 

version of graphene, and possible 
realization in pyrochlore iridates.  

!   Arises in materials with strong-spin 
orbit coupling that break either time-
reversal or inversion symmetry. The 
Dirac node is topologically protected. 

Significance 
Leads to exotic ‘Fermi arc’ surface states. 
A Topological phase beyond topological 
insulators. 

Publications  
X.#Wan,#A. M.#Turner,#Ashvin#Vishwanath,#and#S. 
Y.#Savrasov,#Phys.#Rev.#B#83,#205101#(2011).#
X.#Wan,#,#Ashvin#Vishwanath#and#S.#Y.#Savrasov,#
Phys.#Rev.#LeE.#108#(2012).**
P.#Hosur,#S.#Parameswaran#,#Ashvin#Vishwanath,#
Phys.#Rev.#LeE.#108##046602#(2012). 
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Semi-topological semi-metals in 3D	


created by magnetic backgrounds

Graphene (2D) has a 2-band Dirac point (1947)	


!
!

Stabilized by symmetries of honeycomb lattice.	


Unstable to adding 3rd Pauli matrix (opens gap).	



!
Two versions in 3D: 2-band Weyl point (Herring, 1937)	



!
!

Requires breaking of time-reversal or inversion symmetry	


!

If not, combination of 2 Weyl points = 4-band Dirac point, 
which can be stabilized by crystalline symmetries.	
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Just seen via ARPES in Cd3As2 (Princeton), Na3Bi (Oxford).



3D Weyl and Dirac semimetals

1. The 3D Weyl semimetal is quite stable as long as crystal 
momentum is well-defined (there is a topological “Chern number” 
around the Weyl point).	


!
2. It might appear in pyrochlore iridates (DFT+U says so).	


!
3. It has an unusual “Fermi arc” surface state connecting the Weyl 
points.	


!
Problem: We don’t know whether the actual magnetic background in experiment is 
the right one for this phase, or even whether there is a single background or a spin-
ice-like fluctuating one.	


!
DFT+U is a useful technique, especially if some information about the magnetic 
structure is provided by experiment.



Yet another spin liquid in iridates

A solvable non-Abelian spin liquid Hamiltonian written down by Kitaev 
on the honeycomb lattice, with strong spin-orbital coupling,	


!
!
!
!
may actually appear as the effective Hamiltonian of honeycomb iridates 
(Jackeli and Khaliullin, PRL 08).	


!
Sodium iridate experiment: maybe not (S.K. Choi et al., 2012):
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